232
Views
0
CrossRef citations to date
0
Altmetric
Review

Exosomes: current knowledge and future perspectives

, , &
Article: 2232248 | Received 08 May 2023, Accepted 27 Jun 2023, Published online: 13 Jul 2023

References

  • Lotvall J, Valadi H. Cell to cell signalling via exosomes through esRNA. Cell Adh Migr. 2007 Jul 1;1(3):1–19. doi:10.4161/cam.1.3.5114.
  • Kim DK, Kang B, Kim OY, Choi DS, Lee J, Kim SR, Go G, Yoon YJ, Kim JH, Jang SC, et al. Evpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles. J Extracell Vesicles. 2013 Jan 1;2(1):20384. doi:10.3402/jev.v2i0.20384.
  • Li J, Umar S, Amjedi M, Iorga A, Sharma S, Nadadur RD, Regitz-Zagrosek V, Eghbali M. New frontiers in heart hypertrophy during pregnancy. Am J Cardiovasc Dis. 2012;2:192.
  • He C, Zheng S, Luo Y, Wang B. Exosome theranostics: biology and translational medicine. Theranostics. 2018 Jul 24;8(1):237. doi:10.7150/thno.21945.
  • Vickers NJ. Animal communication: when i’m calling you, will you answer too? Curr Biol. 2017 Apr;27(14):R713–5. doi:10.1016/j.cub.2017.05.064.
  • Abels ER, Breakefield XO. Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake. Cell Mol Neurobiol. 2016 Apr;36(3):301–312. doi:10.1007/s10571-016-0366-z.
  • Willis CL, Garwood CJ, Ray DE. A size selective vascular barrier in the rat area postrema formed by perivascular macrophages and the extracellular matrix. Neuroscience. 2007 Dec 5;150(2):498–509. doi:10.1016/j.neuroscience.2007.09.023.
  • Tajes M, Ramos-Fernández E, Weng-Jiang X, Bosch-Morato M, Guivernau B, Eraso-Pichot A, Salvador B, Fernandez-Busquets X, Roquer J, Munoz FJ. The blood-brain barrier: structure, function and therapeutic approaches to cross it. Mol Membr Biol. 2014 Aug 1;31(5):152–167. doi:10.3109/09687688.2014.937468.
  • Patel MM, Patel BM. Crossing the blood–brain barrier: recent advances in drug delivery to the brain. Cns Drugs. 2017 Feb;31(2):109–133. doi:10.1007/s40263-016-0405-9.
  • Matsumoto J, Stewart T, Banks WA, Zhang J. The transport mechanism of extracellular vesicles at the blood-brain barrier. Curr Pharm Des. 2017 Nov 1;23(40):6206–6214. doi:10.2174/1381612823666170913164738.
  • Tian T, Zhu YL, Hu FH, Wang YY, Huang NP, Xiao ZD. Dynamics of exosome internalization and trafficking. J Cell Physiol. 2013 Jul;228(7):1487–1495. doi:10.1002/jcp.24304.
  • Chen W, Wang X, Yan X, Yu Z, Zhang J, Han S. The emerging role of exosomes in the pathogenesis, prognosis and treatment of necrotizing enterocolitis. Am J Transl Res. 2020;12:7020.
  • Miranda J, Paules C, Nair S, Lai A, Palma C, Scholz-Romero K, Rice GE, Gratacos E, Crispi F, Salomon C. Placental exosomes profile in maternal and fetal circulation in intrauterine growth restriction-Liquid biopsies to monitoring fetal growth. Placenta. 2018 Apr 1;64:34–43. doi:10.1016/j.placenta.2018.02.006.
  • Zhang W, Wang Y, Kong Y. Exosomes derived from mesenchymal stem cells modulate miR-126 to ameliorate hyperglycemia-induced retinal inflammation via targeting HMGB1. Invest Ophthalmol Visual Sci. 2019 Jan 2;60(1):294–303. doi:10.1167/iovs.18-25617.
  • Liu H, Yu X, Yu S, Kou J. Molecular mechanisms in lipopolysaccharide-induced pulmonary endothelial barrier dysfunction. Int Immunopharmacol. 2015 Dec 1;29(2):937–946. doi:10.1016/j.intimp.2015.10.010.
  • Qi D, Deng W, Chen X, Fan S, Peng J, Tang X, Wang D, Yu Q, Song L. Adipose-derived circulating exosomes promote protection of the pulmonary endothelial barrier by inhibiting EndMT and oxidative stress through down-regulation of the TGF-β pathway: a potential explanation for the obesity paradox in ards. Oxid Med Cell Longev. 2022 May 5;2022:1–25. doi:10.1155/2022/5475832.
  • Qiu H, Liu S, Wu K, Zhao R, Cao L, Wang H. Prospective application of exosomes derived from adipose‐derived stem cells in skin wound healing: a review. J Cosmet Dermatol. 2020 Mar;19(3):574–581. doi:10.1111/jocd.13215.
  • Liu W, Bai X, Zhang A, Huang J, Xu S, Zhang J. Role of exosomes in central nervous system diseases. Front Mol Neurosci. 2019 Oct 4;12:240. doi:10.3389/fnmol.2019.00240.
  • Otero-Ortega L, Laso-García F, Gómez-de Frutos M, Fuentes B, Diekhorst L, Díez-Tejedor E, Gutiérrez-Fernández M. Role of exosomes as a treatment and potential biomarker for stroke. Transl Stroke Res. 2019 Jun 15;10(3):241–249. doi:10.1007/s12975-018-0654-7.
  • Malm T, Loppi S, Kanninen KM. Exosomes in Alzheimer’s disease. Neurochem Int. 2016 Jul 1;97:193–199. doi:10.1016/j.neuint.2016.04.011.
  • Mathew B, Torres LA, Gamboa Acha L, Tran S, Liu A, Patel R, Chennakesavalu M, Aneesh A, Huang CC, Feinstein DL, et al. Uptake and distribution of administered bone marrow mesenchymal stem cell extracellular vesicles in retina. Cells. 2021 Mar 25;10(4):730. doi:10.3390/cells10040730.
  • Mirzaei H, Momeni F, Saadatpour L, Sahebkar A, Goodarzi M, Masoudifar A, Kouhpayeh S, Salehi H, Mirzaei HR, Jaafari MR. MicroRNA: relevance to stroke diagnosis, prognosis, and therapy. J Cell Physiol. 2018 Feb;233(2):856–865. doi:10.1002/jcp.25787.
  • Kanhai DA, de Kleijn DP, Kappelle LJ, Uiterwaal CS, van der Graaf Y, Pasterkamp G, Geerlings MI, Visseren FL, SMART Study Group. Extracellular vesicle protein levels are related to brain atrophy and cerebral white matter lesions in patients with manifest vascular disease: the SMART-MR study. BMJ Open. 2014 Jan 1;4(1):e003824. doi:10.1136/bmjopen-2013-003824.
  • Hartmann A, Muth C, Dabrowski O, Krasemann S, Glatzel M. Exosomes and the prion protein: more than one truth. Front Neurosci. 2017 Apr 19;11:194. doi:10.3389/fnins.2017.00194.
  • Leggio L, Vivarelli S, L’Episcopo F, Tirolo C, Caniglia S, Testa N, Marchetti B, Iraci N. microRnas in Parkinson’s disease: from pathogenesis to novel diagnostic and therapeutic approaches. Int J Mol Sci. 2017 Dec 13;18(12):2698. doi:10.3390/ijms18122698.
  • Ohmichi T, Mitsuhashi M, Tatebe H, Kasai T, El-Agnaf OM, Tokuda T. Quantification of brain-derived extracellular vesicles in plasma as a biomarker to diagnose Parkinson’s and related diseases. Parkinsonism Relat Disord. 2019 Apr 1;61:82–87. doi:10.1016/j.parkreldis.2018.11.021.
  • Yadav R, Weng HR. EZH2 regulates spinal neuroinflammation in rats with neuropathic pain. Neuroscience. 2017 May 4;349:106–117. doi:10.1016/j.neuroscience.2017.02.041.
  • Cervenakova L, Saá P, Yakovleva O, Vasilyeva I, de Castro J, Brown P, Dodd R. Are prions transported by plasma exosomes? Transfus Apher Sci. 2016 Aug 1;55(1):70–83. doi:10.1016/j.transci.2016.07.013.
  • Guo BB, Bellingham SA, Hill AF. Stimulating the release of exosomes increases the intercellular transfer of prions. J Biol Chem. 2016 Mar 4;291(10):5128–5137. doi:10.1074/jbc.M115.684258.
  • Kanata E, Thüne K, Xanthopoulos K, Ferrer I, Dafou D, Zerr I, Sklaviadis T, Llorens F. MicroRNA alterations in the brain and body fluids of humans and animal prion disease models: current status and perspectives. Front Aging Neurosci. 2018 Jul 23;10:220. doi:10.3389/fnagi.2018.00220.
  • Ailawadi S, Wang X, Gu H, Fan GC. Pathologic function and therapeutic potential of exosomes in cardiovascular disease. Biochim Biophys Acta - Mol Basis Dis. 2015 Jan 1;1852(1):1–1. doi:10.1016/j.bbadis.2014.10.008.
  • Tirziu D, Giordano FJ, Simons M. Cell communications in the heart. Circulation. 2010 Aug 31;122(9):928–937. doi:10.1161/CIRCULATIONAHA.108.847731.
  • Pentassuglia L, Sawyer DB. ErbB/Integrin signaling interactions in regulation of myocardial cell–cell and cell–matrix interactions. Biochim Biophys Acta - Mol Cell Res. 2013 Apr 1;1833(4):909–916. doi:10.1016/j.bbamcr.2012.12.007.
  • Johnstone RM, Bianchini A, Teng K. Reticulocyte maturation and exosome release: transferrin receptor containing exosomes shows multiple plasma membrane functions. Blood. 1989 Oct 1;74(5):1844–1851. doi:10.1182/blood.V74.5.1844.1844.
  • Trams EG, Lauter CJ, Salem JN, Heine U. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim Biophys Acta - Bio. 1981 Jun 6;645(1):63–70. doi:10.1016/0005-2736(81)90512-5.
  • Pan BT, Teng K, Wu C, Adam M, Johnstone RM. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol. 1985 Sep;101(3):942–948. doi:10.1083/jcb.101.3.942.
  • Abramochkin DV, Lozinsky IT, Kamkin A. Influence of mechanical stress on fibroblast–myocyte interactions in mammalian heart. J Mol Cell Cardiol. 2014 May 1;70:27–36. doi:10.1016/j.yjmcc.2013.12.020.
  • Oka T, Komuro I. Molecular mechanisms underlying the transition of cardiac hypertrophy to heart failure. Circ J. 2008;72(SupplementA):A13–6. doi:10.1253/circj.CJ-08-0481.
  • Bang C, Batkai S, Dangwal S, Gupta SK, Foinquinos A, Holzmann A, Just A, Remke J, Zimmer K, Zeug A, et al. Cardiac fibroblast–derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest. 2014 May 1;124(5):2136–2146. doi:10.1172/JCI70577.
  • Hilfiker-Kleiner D, Kaminski K, Podewski E, Bonda T, Schaefer A, Sliwa K, Forster O, Quint A, Landmesser U, Doerries C, et al. A cathepsin D-cleaved 16 kDa form of prolactin mediates postpartum cardiomyopathy. Cell. 2007 Feb 9;128(3):589–600. doi:10.1016/j.cell.2006.12.036.
  • Raslova K. An update on the treatment of type 1 and type 2 diabetes mellitus: focus on insulin detemir, a long-acting human insulin analog. Vasc Health Risk Manag. 2010;6:399. doi:10.2147/VHRM.S10397.
  • Cohen G, Riahi Y, Alpert E, Gruzman A, Sasson S. The roles of hyperglycaemia and oxidative stress in the rise and collapse of the natural protective mechanism against vascular endothelial cell dysfunction in diabetes. Arch Physiol Biochem. 2007 Jan 1;113(4–5):259–267. doi:10.1080/13813450701783513.
  • Hsieh PC, Davis ME, Lisowski LK, Lee RT. Endothelial-cardiomyocyte interactions in cardiac development and repair. Annu Rev Physiol. 2006 Mar 17;68(1):51–66. doi:10.1146/annurev.physiol.68.040104.124629.
  • Iskander KN, Osuchowski MF, Stearns-Kurosawa DJ, Kurosawa S, Stepien D, Valentine C, Remick DG. Sepsis: multiple abnormalities, heterogeneous responses, and evolving understanding. Physiol Rev. 2013 Jul;93(3):1247–1288. doi:10.1152/physrev.00037.2012.
  • Romero-Bermejo F J, Ruiz-Bailen M, Gil-Cebrian J, Huertos-Ranchal M J. Sepsis-induced cardiomyopathy. Curr Cardiol Rev. 2011 Aug 1;7(3):163–183. doi:10.2174/157340311798220494.
  • Azevedo LC, Janiszewski M, Pontieri V, Pedro MD, Bassi E, Tucci PJ, Laurindo FR. Platelet-derived exosomes from septic shock patients induce myocardial dysfunction. Crit Care. 2007 Dec;11(6):1–0. doi:10.1186/cc6176.
  • Iglesias-García O, Pelacho B, Prósper F. Induced pluripotent stem cells as a new strategy for cardiac regeneration and disease modeling. J Mol Cell Cardiol. 2013 Sep 1;62:43–50. doi:10.1016/j.yjmcc.2013.04.022.
  • Van Den Akker F, Deddens JC, Doevendans PA, Sluijter JP. Cardiac stem cell therapy to modulate inflammation upon myocardial infarction. Biochim Biophys Acta - Gen Subj. 2013 Feb 1;1830(2):2449–2458. doi:10.1016/j.bbagen.2012.08.026.
  • Arslan F, Lai RC, Smeets MB, Akeroyd L, Choo A, Aguor EN, Timmers L, van Rijen HV, Doevendans PA, Pasterkamp G, et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res. 2013;10(3):301–312. doi:10.1016/j.scr.2013.01.002.
  • Burt R, Pearce W, Luo K, Oyama Y, Davidson C, Beohar N, Gheorghiade M. Hematopoietic stem cell transplantation for cardiac and peripheral vascular disease. Bone Marrow Transplant. 2003 Aug;32(1):S29–31. doi:10.1038/sj.bmt.1704177.
  • Fukuda K, Fujita JU. Mesenchymal, but not hematopoietic, stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction in mice. Kidney Int. 2005 Nov 1;68(5):1940–1943. doi:10.1111/j.1523-1755.2005.00624.x.
  • Ibrahim AG, Cheng K, Marbán E. Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Rep. 2014 May 6;2(5):606–619. doi:10.1016/j.stemcr.2014.04.006.
  • Li B, Zhang HQ, Shi Y, Min YB, Lin SF, Wu KL, Hu J, Tang SB. Overexpression of nuclear transport factor 2 may protect against diabetic retinopathy. Mol Vis. 2009;15:861.
  • Stitt AW, Curtis TM, Chen M, Medina RJ, McKay GJ, Jenkins A, Gardiner TA, Lyons TJ, Hammes HP, Simo R, et al. The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res. 2016 Mar 1;51:156–186. doi:10.1016/j.preteyeres.2015.08.001.
  • Liu L, Sun Q, Wang R, Chen Z, Wu J, Xia F, Fan XQ. Methane attenuates retinal ischemia/reperfusion injury via anti-oxidative and anti-apoptotic pathways. Brain Res. 2016 Sep 1;1646:327–333. doi:10.1016/j.brainres.2016.05.037.
  • Hsu MY, Chiu CC, Wang JY, Huang CT, Huang YF, Liou JC, Chen C, Chen HC, Cheng CM. Based microfluidic platforms for understanding the role of exosomes in the pathogenesis of major blindness-threatening diseases. Nanomaterials. 2018 May 8;8(5):310. doi:10.3390/nano8050310.
  • Shah N, Ishii M, Brandon C, Ablonczy Z, Cai J, Liu Y, Chou CJ, Rohrer B. Extracellular vesicle-mediated long-range communication in stressed retinal pigment epithelial cell monolayers. Biochim Biophys Acta - Mol Basis Dis. 2018 Aug 1;1864(8):2610–2622. doi:10.1016/j.bbadis.2018.04.016.
  • Elbay A, Ercan Ç, Akbaş F, Bulut H, Ozdemir H. Three new circulating microRnas may be associated with wet age-related macular degeneration. Scandinavian Journal Of Clinical And Laboratory Investigation. 2019 Aug 18;79(6):388–394. doi:10.1080/00365513.2019.1637931.
  • Davis BM, Crawley L, Pahlitzsch M, Javaid F, Cordeiro MF. Glaucoma: the retina and beyond. Acta Neuropathol. 2016 Dec;132(6):807–826. doi:10.1007/s00401-016-1609-2.
  • Butler NJ, Furtado JM, Winthrop KL, Smith JR. Ocular toxoplasmosis II: clinical features, pathology and management. Clin Experiment Ophthalmol. 2013 Jan;41(1):95–108. doi:10.1111/j.1442-9071.2012.02838.x.
  • Harrell CR, Fellabaum C, Arsenijevic A, Markovic BS, Djonov V, Volarevic V. Therapeutic potential of mesenchymal stem cells and their secretome in the treatment of glaucoma. Stem Cells Int. 2019 Dec 27;2019:1–11. doi:10.1155/2019/7869130.
  • Liu Y, Allingham RR, Qin X, Layfield D, Dellinger AE, Gibson J, Wheeler J, Ashley-Koch AE, Stamer WD, Hauser MA. Gene expression profile in human trabecular meshwork from patients with primary open-angle glaucoma. Invest Ophthalmol Visual Sci. 2013 Sep 1;54(9):6382–6389. doi:10.1167/iovs.13-12128.
  • Stamer WD, Hoffman EA, Luther JM, Hachey DL, Schey KL. Protein profile of exosomes from trabecular meshwork cells. J Proteomics. 2011 May 16;74(6):796–804. doi:10.1016/j.jprot.2011.02.024.
  • Mead B, Tomarev S. BMSC-derived exosomes promote survival of retinal ganglion cells through miRNA-dependent mechanisms. Stem Cells Transl Med. 2017 Apr;6(4):1273. doi:10.1002/sctm.16-0428.
  • Mead B, Ahmed Z, Tomarev S. Mesenchymal stem cell–derived small extracellular vesicles promote neuroprotection in a genetic DBA/2J mouse model of glaucoma. Invest Ophthalmol Visual Sci. 2018 Nov 1;59(13):5473–5480. doi:10.1167/iovs.18-25310.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.