532
Views
1
CrossRef citations to date
0
Altmetric
Digested Disorder

Quarterly intrinsic disorder digest (January-February-March, 2014)

, &
Article: e1153395 | Published online: 23 Mar 2016

References

  • Uversky VN. Digested disorder: Quarterly intrinsic disorder digest (January/February/ March, 2013). Intrinsically Dis Proteins 2013; 1:e25496; http://dx.doi.org/10.4161/idp.25496
  • DeForte S, Reddy KD, Uversky VN. Digested disorder, issue #2: Quarterly intrinsic disorder digest (April/May/June, 2013). Intrinsically Dis Proteins 2013; 1:e27454; http://dx.doi.org/10.4161/idp.27454
  • Reddy KD, DeForte S, Uversky VN. Digested disorder, issue #3: Quarterly intrinsic disorder digest (July/August/September, 2013). Intrinsically Dis Proteins 2013; 2:e27833; http://dx.doi.org/10.4161/idp.27833
  • DeForte S, Reddy KD, Uversky VN. Digested disorder, issue #4: Quarterly intrinsic disorder digest (October-November-December, 2013). Intrinsically Dis Proteins 2015; 3 1-10; http://dx.doi.org/10.4161/21690707.2014.984569
  • Sickmeier M, Hamilton JA, LeGall T, Vacic V, Cortese MS, Tantos A, Szabo B, Tompa P, Chen J, Uversky VN, Obradovic Z, Dunker AK. DisProt: the Database of Disordered Proteins. Nucleic Acids Res 2007; 35:D786-93; PMID:17145717; http://dx.doi.org/10.1093/nar/gkl893
  • Fukuchi S, Amemiya T, Sakamoto S, Nobe Y, Hosoda K, Kado Y, Murakami SD, Koike R, Hiroaki H, Ota M. IDEAL in 2014 illustrates interaction networks composed of intrinsically disordered proteins and their binding partners. Nucleic Acids Res 2014; 42:D320-5; PMID:24178034; http://dx.doi.org/10.1093/nar/gkt1010
  • Oates ME, Romero P, Ishida T, Ghalwash M, Mizianty MJ, Xue B, Dosztányi Z, Uversky VN, Obradovic Z, Kurgan L, et al. D2P2: database of disordered protein predictions. Nucleic Acids Res 2013; 41:D508-16; PMID:23203878; http://dx.doi.org/10.1093/nar/gks1226
  • Di Domenico T, Walsh I, Tosatto SC. Analysis and consensus of currently available intrinsic protein disorder annotation sources in the MobiDB database. BMC Bioinformatics 2013; 14 Suppl 7:S3; PMID:23815411; http://dx.doi.org/10.1186/1471-2105-14-S7-S3
  • Varadi M, Kosol S, Lebrun P, Valentini E, Blackledge M, Dunker AK, Felli IC, Forman-Kay JD, Kriwacki RW, Pierattelli R, et al. pE-DB: a database of structural ensembles of intrinsically disordered and of unfolded proteins. Nucleic Acids Res 2014; 42:D326-35; PMID:24174539; http://dx.doi.org/10.1093/nar/gkt960
  • Tompa P, Varadi M. Predicting the predictive power of IDP ensembles. Structure 2014; 22:177-8; PMID:24507778; http://dx.doi.org/10.1016/j.str.2014.01.003
  • Schwalbe M, Ozenne V, Bibow S, Jaremko M, Jaremko L, Gajda M, Jensen MR, Biernat J, Becker S, Mandelkow E, et al. Predictive atomic resolution descriptions of intrinsically disordered hTau40 and alpha-synuclein in solution from NMR and small angle scattering. Structure 2014; 22:238-49; PMID:24361273; http://dx.doi.org/10.1016/j.str.2013.10.020
  • Heinrich J, Krone M, O'Donoghue SI, Weiskopf D. Visualising intrinsic disorder and conformational variation in protein ensembles. Faraday Discuss 2014; 169:179-93; PMID:25340810; http://dx.doi.org/10.1039/C3FD00138E
  • De Biasio A, Ibanez de Opakua A, Cordeiro TN, Villate M, Merino N, Sibille N, Lelli M, Diercks T, Bernado P, Blanco FJ. p15PAF is an intrinsically disordered protein with nonrandom structural preferences at sites of interaction with other proteins. Biophysical journal 2014; 106:865-74; PMID:24559989; http://dx.doi.org/10.1016/j.bpj.2013.12.046
  • Sheikh MO, Schafer CM, Powell JT, Rodgers KK, Mooers BH, West CM. Glycosylation of Skp1 affects its conformation and promotes binding to a model f-box protein. Biochemistry 2014; 53:1657-69; PMID:24506136; http://dx.doi.org/10.1021/bi401707y
  • Keller JP, Homma K, Duan C, Zheng J, Cheatham MA, Dallos P. Functional regulation of the SLC26-family protein prestin by calcium/calmodulin. J Neurosci 2014; 34:1325-32; PMID:24453323; http://dx.doi.org/10.1523/JNEUROSCI.4020-13.2014
  • Iesmantavicius V, Dogan J, Jemth P, Teilum K, Kjaergaard M. Helical propensity in an intrinsically disordered protein accelerates ligand binding. Angewandte Chemie 2014; 53:1548-51; PMID:24449148; http://dx.doi.org/10.1002/anie.201307712
  • Lee JS. Nanopore analysis of the effect of metal ions on the folding of peptides and proteins. Protein and peptide letters 2014; 21:247-55; PMID:24370255; http://dx.doi.org/10.2174/09298665113209990075
  • Golebiewska U, Zurawsky C, Scarlata S. Defining the oligomerization state of gamma-synuclein in solution and in cells. Biochemistry 2014; 53:293-9; PMID:24367999; http://dx.doi.org/10.1021/bi401479a
  • Brister MA, Pandey AK, Bielska AA, Zondlo NJ. OGlcNAcylation and phosphorylation have opposing structural effects in tau: phosphothreonine induces particular conformational order. J Am Chem Soc 2014; 136:3803-16; PMID:24559475; http://dx.doi.org/10.1021/ja407156m
  • Grishin AM, Cherney M, Anderson DH, Phanse S, Babu M, Cygler M. NleH defines a new family of bacterial effector kinases. Structure 2014; 22:250-9; PMID:24373767; http://dx.doi.org/10.1016/j.str.2013.11.006
  • Deshmukh L, Ghirlando R, Clore GM. Investigation of the structure and dynamics of the capsid-spacer peptide 1-nucleocapsid fragment of the HIV-1 gag polyprotein by solution NMR spectroscopy. Angewandte Chemie 2014; 53:1025-8; PMID:24338988; http://dx.doi.org/10.1002/anie.201309127
  • Martinez-Zapien D, Delsuc MA, Trave G, Lutzing R, Rochette-Egly C, Kieffer B. Production and characterization of a retinoic acid receptor RARgamma construction encompassing the DNA binding domain and the disordered N-terminal proline rich domain. Protein Exp Purificat 2014; 95:113-20; PMID:24333369; http://dx.doi.org/10.1016/j.pep.2013.12.001
  • Nourse A, Mittag T. The cytoplasmic domain of the T-cell receptor zeta subunit does not form disordered dimers. J Mol Biol 2014; 426:62-70; PMID:24120941; http://dx.doi.org/10.1016/j.jmb.2013.09.036
  • Hill SA, Kwa LG, Shammas SL, Lee JC, Clarke J. Mechanism of assembly of the non-covalent spectrin tetramerization domain from intrinsically disordered partners. J Mol Biol 2014; 426:21-35; PMID:24055379; http://dx.doi.org/10.1016/j.jmb.2013.08.027
  • Butz M, Kast P, Hilvert D. Affinity maturation of a computationally designed binding protein affords a functional but disordered polypeptide. J Struct Biol 2014; 185:168-77; PMID:23537847; http://dx.doi.org/10.1016/j.jsb.2013.03.008
  • Hashi Y, Kawai G, Kotani S. Microtubule-associated protein (MAP) 4 interacts with microtubules in an intrinsically disordered manner. Biosci Biotechnol Biochem 2014; 78:1864-70; PMID:25052097; http://dx.doi.org/10.1080/09168451.2014.940836
  • Breydo L, Reddy KD, Piai A, Felli IC, Pierattelli R, Uversky VN. The crowd you're in with: effects of different types of crowding agents on protein aggregation. Biochimica et biophysica acta 2014; 1844:346-57; PMID:24252314; http://dx.doi.org/10.1016/j.bbapap.2013.11.004
  • Kutyshenko VP, Prokhorov DA, Molochkov NV, Sharapov MG, Kolesnikov I, Uversky VN. Dancing retro: solution structure and micelle interactions of the retro-SH3-domain, retro-SHH-‘Bergerac’. J Biomol Struct Dynam 2014; 32:257-72; PMID:23527530; http://dx.doi.org/10.1080/07391102.2012.762724
  • Hendus-Altenburger R, Kragelund BB, Pedersen SF. Structural dynamics and regulation of the mammalian SLC9A family of Na(+)/H(+) exchangers. Curr Topics Membranes 2014; 73:69-148; PMID:24745981; http://dx.doi.org/10.1016/B978-0-12-800223-0.00002-5
  • Oldfield CJ, Dunker AK. Intrinsically disordered proteins and intrinsically disordered protein regions. Annu Rev Biochem 2014; 83:553-84; PMID:24606139; http://dx.doi.org/10.1146/annurev-biochem-072711-164947
  • Hisaoka M, Nagata K, Okuwaki M. Intrinsically disordered regions of nucleophosmin/B23 regulate its RNA binding activity through their inter- and intra-molecular association. Nucleic Acids Res 2014; 42:1180-95; PMID:24106084; http://dx.doi.org/10.1093/nar/gkt897
  • Quan S, Wang L, Petrotchenko EV, Makepeace KA, Horowitz S, Yang J, Zhang Y, Borchers CH, Bardwell JC. Super Spy variants implicate flexibility in chaperone action. Elife 2014; 3:e01584; PMID:24497545; http://dx.doi.org/10.7554/eLife.01584
  • Bencivenga D, Tramontano A, Borgia A, Negri A, Caldarelli I, Oliva A, Perrotta S, Della Ragione F, Borriello A. p27Kip1 serine 10 phosphorylation determines its metabolism and interaction with cyclin-dependent kinases. Cell Cycle 2014; 13:3768-82; PMID:25483085; http://dx.doi.org/10.4161/15384101.2014.965999
  • Khurana J, Manisha, Singh R, Kaur J. Intrinsically unstructured carboxy terminus of Bacillus lipase is essential for its function. Protein Pept Lett 2014; 21:1265-72; PMID:25001212
  • Choy MS, Hieke M, Kumar GS, Lewis GR, Gonzalez-DeWhitt KR, Kessler RP, Stein BJ, Hessenberger M, Nairn AC, Peti W, et al. Understanding the antagonism of retinoblastoma protein dephosphorylation by PNUTS provides insights into the PP1 regulatory code. Proc Natl Acad Sci U S A 2014; 111:4097-102; PMID:24591642; http://dx.doi.org/10.1073/pnas.1317395111
  • Hill AT, Ying S, Plaxton WC. Phosphorylation of bacterial-type phosphoenolpyruvate carboxylase by a Ca2+-dependent protein kinase suggests a link between Ca2+ signalling and anaplerotic pathway control in developing castor oil seeds. Biochem J 2014; 458:109-18; PMID:24266766; http://dx.doi.org/10.1042/BJ20131191
  • Rajagopalan K, Qiu R, Mooney SM, Rao S, Shiraishi T, Sacho E, Huang H, Shapiro E, Weninger KR, Kulkarni P. The Stress-response protein prostate-associated gene 4, interacts with c-Jun and potentiates its transactivation. Biochim Biophys Acta 2014; 1842:154-63; PMID:24263171; http://dx.doi.org/10.1016/j.bbadis.2013.11.014
  • Mooney SM, Qiu R, Kim JJ, Sacho EJ, Rajagopalan K, Johng D, Shiraishi T, Kulkarni P, Weninger KR. Cancer/testis antigen PAGE4, a regulator of c-Jun transactivation, is phosphorylated by homeodomain-interacting protein kinase 1, a component of the stress-response pathway. Biochemistry 2014; 53:1670-9; PMID:24559171; http://dx.doi.org/10.1021/bi500013w
  • Lee DW, Banquy X, Kristiansen K, Kaufman Y, Boggs JM, Israelachvili JN. Lipid domains control myelin basic protein adsorption and membrane interactions between model myelin lipid bilayers. Proc Natl Acad Sci U S A 2014; 111:E768-75; PMID:24516125; http://dx.doi.org/10.1073/pnas.1401165111
  • Ramos I, Fernandez-Rivero N, Arranz R, Aloria K, Finn R, Arizmendi JM, Ausio J, Valpuesta JM, Muga A, Prado A. The intrinsically disordered distal face of nucleoplasmin recognizes distinct oligomerization states of histones. Nucleic Acids Res 2014; 42:1311-25; PMID:24121686; http://dx.doi.org/10.1093/nar/gkt899
  • Albar AH, Almehdar HA, Uversky VN, Redwan EM. Structural heterogeneity and multifunctionality of lactoferrin. Curr Protein Pept Sci 2014; 15:778-97; PMID:25245670; http://dx.doi.org/10.2174/1389203715666140919124530
  • Simons SS, Jr., Edwards DP, Kumar R. Minireview: dynamic structures of nuclear hormone receptors: new promises and challenges. Mol Endocrinol 2014; 28:173-82; PMID:24284822; http://dx.doi.org/10.1210/me.2013-1334
  • Fiserova J, Spink M, Richards SA, Saunter C, Goldberg MW. Entry into the nuclear pore complex is controlled by a cytoplasmic exclusion zone containing dynamic GLFG-repeat nucleoporin domains. J Cell Sci 2014; 127:124-36; PMID:24144701; http://dx.doi.org/10.1242/jcs.133272
  • Calidas D, Lyon H, Culver GM. The N-terminal extension of S12 influences small ribosomal subunit assembly in Escherichia coli. Rna 2014; 20:321-30; PMID:24442609; http://dx.doi.org/10.1261/rna.042432.113
  • Asano N, Atsuumi H, Nakamura A, Tanaka Y, Tanaka I, Yao M. Direct interaction between EFL1 and SBDS is mediated by an intrinsically disordered insertion domain. Biochem Biophys Res Commun 2014; 443:1251-6; PMID:24406167; http://dx.doi.org/10.1016/j.bbrc.2013.12.143
  • Erales J, Coffino P. Ubiquitin-independent proteasomal degradation. Biochim Biophys Acta 2014; 1843:216-21; PMID:23684952; http://dx.doi.org/10.1016/j.bbamcr.2013.05.008
  • Tomko RJ, Jr., Hochstrasser M. The intrinsically disordered Sem1 protein functions as a molecular tether during proteasome lid biogenesis. Mol Cell 2014; 53:433-43; PMID:24412063; http://dx.doi.org/10.1016/j.molcel.2013.12.009
  • Striebel F, Imkamp F, Ozcelik D, Weber-Ban E. Pupylation as a signal for proteasomal degradation in bacteria. Biochim Biophys Acta 2014; 1843:103-13; PMID:23557784; http://dx.doi.org/10.1016/j.bbamcr.2013.03.022
  • Christian H, Hofele RV, Urlaub H, Ficner R. Insights into the activation of the helicase Prp43 by biochemical studies and structural mass spectrometry. Nucleic Acids Res 2014; 42:1162-79; PMID:24165877; http://dx.doi.org/10.1093/nar/gkt985
  • Thakur JK, Yadav A, Yadav G. Molecular recognition by the KIX domain and its role in gene regulation. Nucleic Acids Res 2014; 42:2112-25; PMID:24253305; http://dx.doi.org/10.1093/nar/gkt1147
  • Jiao Y, Walker M, Trinick J, Pernier J, Montaville P, Carlier MF. Mutagenetic and electron microscopy analysis of actin filament severing by Cordon-Bleu, a WH2 domain protein. Cytoskeleton (Hoboken) 2014; 71:170-83; PMID:24415668; http://dx.doi.org/10.1002/cm.21161
  • Lyabin DN, Eliseeva IA, Ovchinnikov LP. YB-1 protein: functions and regulation. Wiley Interdiscip Rev RNA 2014; 5:95-110; PMID:24217978; http://dx.doi.org/10.1002/wrna.1200
  • Jemth P, Mu X, Engstrom A, Dogan J. A frustrated binding interface for intrinsically disordered proteins. J Biol Chem 2014; 289:5528-33; PMID:24421312; http://dx.doi.org/10.1074/jbc.M113.537068
  • Marsh JA, Teichmann SA. Parallel dynamics and evolution: Protein conformational fluctuations and assembly reflect evolutionary changes in sequence and structure. Bioessays 2014; 36:209-18; PMID:24272815; http://dx.doi.org/10.1002/bies.201300134
  • Lee C, Kalmar L, Xue B, Tompa P, Daughdrill GW, Uversky VN, Han KH. Contribution of proline to the pre-structuring tendency of transient helical secondary structure elements in intrinsically disordered proteins. Biochim Biophys Acta 2014; 1840:993-1003; PMID:24211251; http://dx.doi.org/10.1016/j.bbagen.2013.10.042
  • Lobanov MY, Galzitskaya OV. Occurrence of disordered patterns and homorepeats in eukaryotic and bacterial proteomes. Mol Biosyst 2012; 8:327-37; PMID:22009164; http://dx.doi.org/10.1039/C1MB05318C
  • Lobanov MY, Sokolovskiy IV, Galzitskaya OV. HRaP: database of occurrence of HomoRepeats and patterns in proteomes. Nucleic Acids Res 2014; 42:D273-8; PMID:24150944; http://dx.doi.org/10.1093/nar/gkt927
  • Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, et al. Pfam: the protein families database. Nucleic Acids Res 2014; 42:D222-30; PMID:24288371; http://dx.doi.org/10.1093/nar/gkt1223
  • Peng Z, Mizianty MJ, Kurgan L. Genome-scale prediction of proteins with long intrinsically disordered regions. Proteins 2014; 82:145-58; PMID:23798504; http://dx.doi.org/10.1002/prot.24348
  • Fan X, Kurgan L. Accurate prediction of disorder in protein chains with a comprehensive and empirically designed consensus. J Biomol Struct Dyn 2014; 32:448-64; PMID:23534882; http://dx.doi.org/10.1080/07391102.2013.775969
  • Huang YJ, Acton TB, Montelione GT. DisMeta: a meta server for construct design and optimization. Methods Mol Biol 2014; 1091:3-16; PMID:24203321; http://dx.doi.org/10.1007/978-1-62703-691-7_1
  • Monastyrskyy B, Kryshtafovych A, Moult J, Tramontano A, Fidelis K. Assessment of protein disorder region predictions in CASP10. Proteins 2014; 82 Suppl 2:127-37; PMID:23946100; http://dx.doi.org/10.1002/prot.24391
  • Higo J, Umezawa K. Free-energy landscape of intrinsically disordered proteins investigated by all-atom multicanonical molecular dynamics. Adv Exp Med Biol 2014; 805:331-51; PMID:24446368; http://dx.doi.org/10.1007/978-3-319-02970-2_14
  • Wang J, Shao Q, Xu Z, Liu Y, Yang Z, Cossins BP, Jiang H, Chen K, Shi J, Zhu W. Exploring transition pathway and free-energy profile of large-scale protein conformational change by combining normal mode analysis and umbrella sampling molecular dynamics. J Phys Chem B 2014; 118:134-43; PMID:24350625; http://dx.doi.org/10.1021/jp4105129
  • Rawat N, Biswas P. Hydrogen bond dynamics in intrinsically disordered proteins. J Phys Chem B 2014; 118:3018-25; PMID:24571104; http://dx.doi.org/10.1021/jp5013544
  • Gerben SR, Lemkul JA, Brown AM, Bevan DR. Comparing atomistic molecular mechanics force fields for a difficult target: a case study on the Alzheimer's amyloid beta-peptide. J Biomol Struct Dyn 2014; 32:1817-32; PMID:24028075; http://dx.doi.org/10.1080/07391102.2013.838518
  • Badasyan A, Tonoyan SA, Giacometti A, Podgornik R, Parsegian VA, Mamasakhlisov Y, Morozov VF. Unified description of solvent effects in the helix-coil transition. Phys Rev E, Statist Nonlin Soft Matter Phys 2014; 89:022723; PMID:25353524; http://dx.doi.org/10.1103/PhysRevE.89.022723
  • Xia K, Wei GW. Molecular nonlinear dynamics and protein thermal uncertainty quantification. Chaos 2014; 24:013103; PMID:24697365; http://dx.doi.org/10.1063/1.4861202
  • Yuwen T, Skrynnikov NR. CP-HISQC: a better version of HSQC experiment for intrinsically disordered proteins under physiological conditions. J Biomol NMR 2014; 58:175-92; PMID:24496557; http://dx.doi.org/10.1007/s10858-014-9815-5
  • Mayzel M, Rosenlow J, Isaksson L, Orekhov VY. Time-resolved multidimensional NMR with non-uniform sampling. J Biomol NMR 2014; 58:129-39; PMID:24435565; http://dx.doi.org/10.1007/s10858-013-9811-1
  • Meyer NH, Zangger K. Enhancing the resolution of multi-dimensional heteronuclear NMR spectra of intrinsically disordered proteins by homonuclear broadband decoupling. Chem Commun 2014; 50:1488-90; PMID:24366473; http://dx.doi.org/10.1039/C3CC48135B
  • Hellman M, Piirainen H, Jaakola VP, Permi P. Bridge over troubled proline: assignment of intrinsically disordered proteins using (HCA)CON(CAN)H and (HCA)N(CA)CO(N)H experiments concomitantly with HNCO and i(HCA)CO(CA)NH. J Biomol NMR 2014; 58:49-60; PMID:24346685; http://dx.doi.org/10.1007/s10858-013-9804-0
  • Sahu D, Bastidas M, Showalter SA. Generating NMR chemical shift assignments of intrinsically disordered proteins using carbon-detected NMR methods. Anal Biochem 2014; 449:17-25; PMID:24333248; http://dx.doi.org/10.1016/j.ab.2013.12.005
  • Heisel KA, Krishnan VV. NMR based solvent exchange experiments to understand the conformational preference of intrinsically disordered proteins using FG-nucleoporin peptide as a model. Biopolymers 2014; 102:69-77; PMID:24037535; http://dx.doi.org/10.1002/bip.22402
  • Selkoe D, Dettmer U, Luth E, Kim N, Newman A, Bartels T. Defining the native state of alpha-synuclein. Neuro-Degenerat Dis 2014; 13:114-7; PMID:24192542; http://dx.doi.org/10.1159/000355516
  • Kaderavek P, Zapletal V, Rabatinova A, Krasny L, Sklenar V, Zidek L. Spectral density mapping protocols for analysis of molecular motions in disordered proteins. J Biomol NMR 2014; 58:193-207; PMID:24515886; http://dx.doi.org/10.1007/s10858-014-9816-4
  • Brucale M, Schuler B, Samori B. Single-molecule studies of intrinsically disordered proteins. Chem Rev 2014; 114:3281-317; PMID:24432838; http://dx.doi.org/10.1021/cr400297g
  • Banerjee PR, Deniz AA. Shedding light on protein folding landscapes by single-molecule fluorescence. Chem Soc Rev 2014; 43:1172-88; PMID:24336839; http://dx.doi.org/10.1039/C3CS60311C
  • Lebendiker M, Danieli T. Production of prone-to-aggregate proteins. FEBS Lett 2014; 588:236-46; PMID:24211444; http://dx.doi.org/10.1016/j.febslet.2013.10.044
  • Challier E, Lisa MN, Nerli BB, Calcaterra NB, Armas P. Novel high-performance purification protocol of recombinant CNBP suitable for biochemical and biophysical characterization. Prot Exp Purificat 2014; 93:23-31; PMID:24161561; http://dx.doi.org/10.1016/j.pep.2013.10.006
  • Hwang PM, Pan JS, Sykes BD. Targeted expression, purification, and cleavage of fusion proteins from inclusion bodies in Escherichia coli. FEBS Lett 2014; 588:247-52; PMID:24076468; http://dx.doi.org/10.1016/j.febslet.2013.09.028
  • Xue B, Uversky VN. Intrinsic disorder in proteins involved in the innate antiviral immunity: another flexible side of a molecular arms race. J Mol Biol 2014; 426:1322-50; PMID:24184279; http://dx.doi.org/10.1016/j.jmb.2013.10.030
  • Xue B, Ganti K, Rabionet A, Banks L, Uversky VN. Disordered interactome of human papillomavirus. Curr Pharm Des 2014; 20:1274-92; PMID:23713779; http://dx.doi.org/10.2174/13816128113199990072
  • Dikiy I, Eliezer D. N-terminal acetylation stabilizes N-terminal helicity in lipid- and micelle-bound alpha-synuclein and increases its affinity for physiological membranes. J Biol Chem 2014; 289:3652-65; PMID:24338013; http://dx.doi.org/10.1074/jbc.M113.512459
  • Shvadchak VV, Subramaniam V. A four-amino acid linker between repeats in the alpha-synuclein sequence is important for fibril formation. Biochemistry 2014; 53:279-81; PMID:24397337; http://dx.doi.org/10.1021/bi401427t
  • Lorenzen N, Lemminger L, Pedersen JN, Nielsen SB, Otzen DE. The N-terminus of alpha-synuclein is essential for both monomeric and oligomeric interactions with membranes. FEBS Lett 2014; 588:497-502; PMID:24374342; http://dx.doi.org/10.1016/j.febslet.2013.12.015
  • Gurnev PA, Yap TL, Pfefferkorn CM, Rostovtseva TK, Berezhkovskii AM, Lee JC, Parsegian VA, Bezrukov SM. Alpha-synuclein lipid-dependent membrane binding and translocation through the alpha-hemolysin channel. Biophy J 2014; 106:556-65; PMID:24507596; http://dx.doi.org/10.1016/j.bpj.2013.12.028
  • Narkiewicz J, Giachin G, Legname G. In vitro aggregation assays for the characterization of alpha-synuclein prion-like properties. Prion 2014; 8:19-32; PMID:24552879; http://dx.doi.org/10.4161/pri.28125
  • Nguyen PH, Tarus B, Derreumaux P. Familial Alzheimer A2 V mutation reduces the intrinsic disorder and completely changes the free energy landscape of the Abeta1-28 monomer. J Phys Chem B 2014; 118:501-10; PMID:24372615; http://dx.doi.org/10.1021/jp4115404
  • Karagoz GE, Duarte AM, Akoury E, Ippel H, Biernat J, Moran Luengo T, Radli M, Didenko T, Nordhues BA, Veprintsev DB, et al. Hsp90-Tau complex reveals molecular basis for specificity in chaperone action. Cell 2014; 156:963-74; PMID:24581495; http://dx.doi.org/10.1016/j.cell.2014.01.037
  • Udan-Johns M, Bengoechea R, Bell S, Shao J, Diamond MI, True HL, Weihl CC, Baloh RH. Prion-like nuclear aggregation of TDP-43 during heat shock is regulated by HSP40/70 chaperones. Hum Mol Gen 2014; 23:157-70; PMID:23962724; http://dx.doi.org/10.1093/hmg/ddt408
  • Chemes LB, Camporeale G, Sanchez IE, de Prat-Gay G, Alonso LG. Cysteine-rich positions outside the structural zinc motif of human papillomavirus E7 provide conformational modulation and suggest functional redox roles. Biochemistry 2014; 53:1680-96; PMID:24559112; http://dx.doi.org/10.1021/bi401562e
  • Kovalskyy DB, Ivanov DN. Recognition of the HIV capsid by the TRIM5alpha restriction factor is mediated by a subset of pre-existing conformations of the TRIM5alpha SPRY domain. Biochemistry 2014; 53:1466-76; PMID:24506064; http://dx.doi.org/10.1021/bi4014962
  • Chang CK, Hou MH, Chang CF, Hsiao CD, Huang TH. The SARS coronavirus nucleocapsid protein–forms and functions. Antivi Res 2014; 103:39-50; PMID:24418573; http://dx.doi.org/10.1016/j.antiviral.2013.12.009
  • Valizadeh V, Zakeri S, Mehrizi AA, Djadid ND. Population genetics and natural selection in the gene encoding the Duffy binding protein II in Iranian Plasmodium vivax wild isolates. Infect Gen Evol 2014; 21:424-35; PMID:24384095; http://dx.doi.org/10.1016/j.meegid.2013.12.012
  • Compadre CM, Singh A, Thakkar S, Zheng G, Breen PJ, Ghosh S, Kiaei M, Boerma M, Varughese KI, Hauer-Jensen M. Molecular dynamics guided design of tocoflexol: a new radioprotectant tocotrienol with enhanced bioavailability. Drug Dev Res 2014; 75:10-22; PMID:24648045; http://dx.doi.org/10.1002/ddr.21162
  • Chu HM, Wright J, Chan YH, Lin CJ, Chang TW, Lim C. Two potential therapeutic antibodies bind to a peptide segment of membrane-bound IgE in different conformations. Nat Commun 2014; 5:3139; PMID:24457896
  • Charpentier MS, Whipple RA, Vitolo MI, Boggs AE, Slovic J, Thompson KN, Bhandary L, Martin SS. Curcumin targets breast cancer stem-like cells with microtentacles that persist in mammospheres and promote reattachment. Cancer Res 2014; 74:1250-60; PMID:24371229; http://dx.doi.org/10.1158/0008-5472.CAN-13-1778

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.