2,981
Views
6
CrossRef citations to date
0
Altmetric
Research Paper

Understanding the roles of intrinsic disorder in subunits of hemoglobin and the disease process of sickle cell anemia

, &
Article: e1248273 | Received 14 Sep 2016, Accepted 10 Oct 2016, Published online: 21 Dec 2016

References

  • Roseff SD. Sickle cell disease: a review. Immunohematology 2009; 25:67-74; PMID:19927623
  • Angastiniotis M, Modell B, Englezos P, Boulyjenkov V. Prevention and control of haemoglobinopathies. Bull World Health Organ 1995; 73:375-86; PMID:7614670
  • Serjeant GR. Sickle-cell disease. Lancet 1997; 350:725-30; PMID:9291916; http://dx.doi.org/10.1016/S0140-6736(97)07330-3
  • Diallo D, Tchernia G. Sickle cell disease in Africa. Curr Opin Hematol 2002; 9:111-6; PMID:11844993; http://dx.doi.org/10.1097/00062752-200203000-00005
  • Streetly A, Latinovic R, Hall K, Henthorn J. Implementation of universal newborn bloodspot screening for sickle cell disease and other clinically significant haemoglobinopathies in England: screening results for 2005–7. J Clin Pathol 2009; 62:26-30; PMID:19103854; http://dx.doi.org/10.1136/jcp.2008.058859
  • Hassell KL. Population estimates of sickle cell disease in the US. Am J Prev Med 2010; 38:S512-21; PMID:20331952; http://dx.doi.org/10.1016/j.amepre.2009.12.022
  • Pawliuk R, Westerman KA, Fabry ME, Payen E, Tighe R, Bouhassira EE, Acharya SA, Ellis J, London IM, Eaves CJ, et al. Correction of sickle cell disease in transgenic mouse models by gene therapy. Science 2001; 294:2368-71; PMID:11743206; http://dx.doi.org/10.1126/science.1065806
  • Arends T, Lehmann H, Plowman D, Stathopoulou R. Haemoglobin North Shore-Caracas β 134 (H12) valine replaced by glutamic acid. FEBS Lett 1977; 80:261-5; PMID:891976; http://dx.doi.org/10.1016/0014-5793(77)80453-5
  • Dunker AK, Garner E, Guilliot S, Romero P, Albrecht K, Hart J, Obradovic Z, Kissinger C, Villafranca JE. Protein disorder and the evolution of molecular recognition: theory, predictions and observations. Pac Symp Biocomput 1998:473-84; PMID:9697205
  • Wright PE, Dyson HJ. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 1999; 293:321-31; PMID:10550212; http://dx.doi.org/10.1006/jmbi.1999.3110
  • Uversky VN, Gillespie JR, Fink AL. Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 2000; 41:415-27; PMID:11025552; http://dx.doi.org/10.1002/1097-0134(20001115)41:3%3c415::AID-PROT130%3e3.0.CO;2-7
  • Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW, et al. Intrinsically disordered protein. J Mol Graph Model 2001; 19:26-59; PMID:11381529; http://dx.doi.org/10.1016/S1093-3263(00)00138-8
  • Tompa P. Intrinsically unstructured proteins. Trends Biochem Sci 2002; 27:527-33; PMID:12368089; http://dx.doi.org/10.1016/S0968-0004(02)02169-2
  • Daughdrill GW, Pielak GJ, Uversky VN, Cortese MS, Dunker AK. Natively disordered proteins. In: Buchner J, Kiefhaber T, eds. Handbook of Protein Folding. Weinheim, Germany: Wiley-VCH, Verlag GmbH & Co. KGaA 2005:271-353
  • Uversky VN, Dunker AK. Understanding protein non-folding. Biochim Biophys Acta 2010; 1804:1231-64; PMID:20117254; http://dx.doi.org/10.1016/j.bbapap.2010.01.017
  • Uversky VN, Dunker AK. The case for intrinsically disordered proteins playing contributory roles in molecular recognition without a stable 3D structure. F1000 Biology Reports 2013; 5:1; PMID:23361308; http://dx.doi.org/10.3410/B5-1
  • Hemmings HC, Jr, Nairn AC, Aswad DW, Greengard P. DARPP-32, a dopamine- and adenosine 3′:5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. II. Purification and characterization of the phosphoprotein from bovine caudate nucleus. J Neurosci 1984; 4:99-110; PMID:6319628
  • Gast K, Damaschun H, Eckert K, Schulze-Forster K, Maurer HR, Muller-Frohne M, Zirwer D, Czarnecki J, Damaschun G. Prothymosin α: a biologically active protein with random coil conformation. Biochemistry 1995; 34:13211-8; PMID:7548085; http://dx.doi.org/10.1021/bi00040a037
  • Weinreb PH, Zhen W, Poon AW, Conway KA, Lansbury PT, Jr. NACP, a protein implicated in Alzheimer disease and learning, is natively unfolded. Biochemistry 1996; 35:13709-15; PMID:8901511; http://dx.doi.org/10.1021/bi961799n
  • Williams RM, Obradovi Z, Mathura V, Braun W, Garner EC, Young J, Takayama S, Brown CJ, Dunker AK. The protein non-folding problem: amino acid determinants of intrinsic order and disorder. Pac Symp Biocomput 2001:89-100; PMID:11262981
  • Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, Dunker AK. Sequence complexity of disordered protein. Proteins 2001; 42:38-48; PMID:11093259; http://dx.doi.org/10.1002/1097-0134(20010101)42:1%3c38::AID-PROT50%3e3.0.CO;2-3
  • Radivojac P, Iakoucheva LM, Oldfield CJ, Obradovic Z, Uversky VN, Dunker AK. Intrinsic disorder and functional proteomics. Biophys J 2007; 92:1439-56; PMID:17158572; http://dx.doi.org/10.1529/biophysj.106.094045
  • Vacic V, Uversky VN, Dunker AK, Lonardi S. Composition Profiler: a tool for discovery and visualization of amino acid composition differences. BMC Bioinformatics 2007; 8:211; PMID:17578581; http://dx.doi.org/10.1186/1471-2105-8-211
  • Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, et al. UniProt: the Universal protein knowledgebase. Nucleic Acids Res 2004; 32:D115-9; PMID:14681372; http://dx.doi.org/10.1093/nar/gkh131
  • Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 2011; 7:539; PMID:21988835; http://dx.doi.org/10.1038/msb.2011.75
  • Xue B, Dunbrack RL, Williams RW, Dunker AK, Uversky VN. PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim Biophys Acta 2010; 1804:996-1010; PMID:20100603; http://dx.doi.org/10.1016/j.bbapap.2010.01.011
  • Peng K, Vucetic S, Radivojac P, Brown CJ, Dunker AK, Obradovic Z. Optimizing long intrinsic disorder predictors with protein evolutionary information. J Bioinform Comput Biol 2005; 3:35-60; PMID:15751111; http://dx.doi.org/10.1142/S0219720005000886
  • Obradovic Z, Peng K, Vucetic S, Radivojac P, Dunker AK. Exploiting heterogeneous sequence properties improves prediction of protein disorder. Proteins 2005; 61(Suppl 7):176-82; PMID:16187360; http://dx.doi.org/10.1002/prot.20735
  • Dosztanyi Z, Csizmok V, Tompa P, Simon I. IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 2005; 21:3433-4; PMID:15955779; http://dx.doi.org/10.1093/bioinformatics/bti541
  • Walsh I, Giollo M, Di Domenico T, Ferrari C, Zimmermann O, Tosatto SC. Comprehensive large-scale assessment of intrinsic protein disorder. Bioinformatics 2015; 31:201-8; PMID:25246432; http://dx.doi.org/10.1093/bioinformatics/btu625
  • Fan X, Kurgan L. Accurate prediction of disorder in protein chains with a comprehensive and empirically designed consensus. J Biomol Struct Dyn 2014; 32:448-64; PMID:23534882; http://dx.doi.org/10.1080/07391102.2013.775969
  • Peng Z, Kurgan L. On the complementarity of the consensus-based disorder prediction. Pac Symp Biocomput 2012:176-87; PMID:22174273
  • Di Domenico T, Walsh I, Martin AJ, Tosatto SC. MobiDB: a comprehensive database of intrinsic protein disorder annotations. Bioinformatics 2012; 28:2080-1; PMID:22661649; http://dx.doi.org/10.1093/bioinformatics/bts327
  • Potenza E, Domenico TD, Walsh I, Tosatto SC. MobiDB 2.0: an improved database of intrinsically disordered and mobile proteins. Nucleic Acids Res 2015; 43:D315-20; PMID:25361972
  • Walsh I, Martin AJ, Di Domenico T, Tosatto SC. ESpritz: accurate and fast prediction of protein disorder. Bioinformatics 2012; 28:503-9; PMID:22190692; http://dx.doi.org/10.1093/bioinformatics/btr682
  • Linding R, Jensen LJ, Diella F, Bork P, Gibson TJ, Russell RB. Protein disorder prediction: implications for structural proteomics. Structure 2003; 11:1453-9; PMID:14604535; http://dx.doi.org/10.1016/j.str.2003.10.002
  • Yang ZR, Thomson R, McNeil P, Esnouf RM. RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics 2005; 21:3369-76; PMID:15947016; http://dx.doi.org/10.1093/bioinformatics/bti534
  • Peng K, Radivojac P, Vucetic S, Dunker AK, Obradovic Z. Length-dependent prediction of protein intrinsic disorder. Bmc Bioinformatics 2006; 7:208; http://dx.doi.org/10.1186/1471-2105-7-208
  • Linding R, Russell RB, Neduva V, Gibson TJ. GlobPlot: exploring protein sequences for globularity and disorder. Nucleic Acids Research 2003; 31:3701-8; PMID:12824398; http://dx.doi.org/10.1093/nar/gkg519
  • Sickmeier M, Hamilton JA, LeGall T, Vacic V, Cortese MS, Tantos A, Szabo B, Tompa P, Chen J, Uversky VN, et al. DisProt: the database of disordered proteins. Nucleic Acids Res 2007; 35:D786-93; PMID:17145717; http://dx.doi.org/10.1093/nar/gkl893
  • Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, et al. Pfam: the protein families database. Nucleic Acids Res 2014; 42:D222-30; PMID:24288371; http://dx.doi.org/10.1093/nar/gkt1223
  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The protein data bank. Nucleic Acids Res 2000; 28:235-42; PMID:10592235; http://dx.doi.org/10.1093/nar/28.1.235
  • Oates ME, Romero P, Ishida T, Ghalwash M, Mizianty MJ, Xue B, Dosztanyi Z, Uversky VN, Obradovic Z, Kurgan L, et al. D(2)P(2): database of disordered protein predictions. Nucleic Acids Res 2013; 41:D508-16; PMID:23203878; http://dx.doi.org/10.1093/nar/gks1226
  • Ishida T, Kinoshita K. PrDOS: prediction of disordered protein regions from amino acid sequence. Nucleic Acids Res 2007; 35:W460-4; PMID:17567614; http://dx.doi.org/10.1093/nar/gkm363
  • Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, et al. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 2011; 39:D561-8; PMID:21045058; http://dx.doi.org/10.1093/nar/gkq973
  • Alonso-Lopez D, Gutierrez MA, Lopes KP, Prieto C, Santamaria R, De Las Rivas J. APID interactomes: providing proteome-based interactomes with controlled quality for multiple species and derived networks. Nucleic Acids Res 2016; 44(W1):W529-35; PMID:27131791
  • Chatr-Aryamontri A, Breitkreutz BJ, Oughtred R, Boucher L, Heinicke S, Chen D, Stark C, Breitkreutz A, Kolas N, O'Donnell L, et al. The BioGRID interaction database: 2015 update. Nucleic Acids Res 2015; 43:D470-8; PMID:25428363; http://dx.doi.org/10.1093/nar/gku1204
  • Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D. The Database of Interacting Proteins: 2004 update. Nucleic Acids Res 2004; 32:D449-51; PMID:14681454; http://dx.doi.org/10.1093/nar/gkh086
  • Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, et al. Human Protein Reference Database–2009 update. Nucleic Acids Res 2009; 37:D767-72; PMID:18988627; http://dx.doi.org/10.1093/nar/gkn892
  • Kerrien S, Aranda B, Breuza L, Bridge A, Broackes-Carter F, Chen C, Duesbury M, Dumousseau M, Feuermann M, Hinz U, et al. The IntAct molecular interaction database in 2012. Nucleic Acids Res 2012; 40:D841-6; PMID:22121220; http://dx.doi.org/10.1093/nar/gkr1088
  • Licata L, Briganti L, Peluso D, Perfetto L, Iannuccelli M, Galeota E, Sacco F, Palma A, Nardozza AP, Santonico E, et al. MINT, the molecular interaction database: 2012 update. Nucleic Acids Res 2012; 40:D857-61; PMID:22096227; http://dx.doi.org/10.1093/nar/gkr930
  • Huttlin EL, Ting L, Bruckner RJ, Gebreab F, Gygi MP, Szpyt J, Tam S, Zarraga G, Colby G, Baltier K, et al. The BioPlex Network: A Systematic Exploration of the Human Interactome. Cell 2015; 162:425-40; PMID:26186194; http://dx.doi.org/10.1016/j.cell.2015.06.043
  • Rose PW, Prlic A, Bi C, Bluhm WF, Christie CH, Dutta S, Green RK, Goodsell DS, Westbrook JD, Woo J, et al. The RCSB Protein Data Bank: views of structural biology for basic and applied research and education. Nucleic Acids Res 2015; 43:D345-56; PMID:25428375; http://dx.doi.org/10.1093/nar/gku1214
  • Manning LR, Russell JE, Padovan JC, Chait BT, Popowicz A, Manning RS, Manning JM. Human embryonic, fetal, and adult hemoglobins have different subunit interface strengths. Correlation with lifespan in the red cell. Protein Sci 2007; 16:1641-58; PMID:17656582; http://dx.doi.org/10.1110/ps.072891007
  • Li X, Romero P, Rani M, Dunker AK, Obradovic Z. Predicting Protein Disorder for N-, C-, and internal regions. Genome Informatics Workshop Genome Informatics 1999; 10:30-40; PMID:11072340
  • Peng K, Radivojac P, Vucetic S, Dunker AK, Obradovic Z. Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics 2006; 7:208; PMID:16618368; http://dx.doi.org/10.1186/1471-2105-7-208
  • Haller JO, Berdon WE, Franke H. Sickle cell anemia: the legacy of the patient (Walter Clement Noel), the interne (Ernest Irons), and the attending physician (James Herrick) and the facts of its discovery. Pediatr Radiol 2001; 31:889-90; PMID:11727028; http://dx.doi.org/10.1007/s002470100014
  • Monod J, Wyman J, Changeux JP. On the nature of allosteric transitions: A Plausible Model. J Mol Biol 1965; 12:88-118; PMID:14343300; http://dx.doi.org/10.1016/S0022-2836(65)80285-6
  • Perutz MF. Stereochemistry of cooperative effects in haemoglobin. Nature 1970; 228:726-39; PMID:5528785; http://dx.doi.org/10.1038/228726a0
  • Fan JS, Zheng Y, Choy WY, Simplaceanu V, Ho NT, Ho C, Yang D. Solution structure and dynamics of human hemoglobin in the carbonmonoxy form. Biochemistry 2013; 52:5809-20; PMID:23901897; http://dx.doi.org/10.1021/bi4005683
  • Pettigrew DW, Turner BW, Ackers GK. Subunit assembly and interactions in hormal and abnormal human hemoglobins. In: Sigler PB, ed. The Molecular Basis of Mutant Hemoglobin Dysfunction. New York, Amsterdam, Oxford: Elsevier/North-Holland, Inc., 1981:191-8
  • Silva MM, Rogers PH, Arnone A. A third quaternary structure of human hemoglobin A at 1.7-A resolution. J Biol Chem 1992; 267:17248-56; PMID:1512262
  • Safo MK, Abraham DJ. The enigma of the liganded hemoglobin end state: a novel quaternary structure of human carbonmonoxy hemoglobin. Biochemistry 2005; 44:8347-59; PMID:15938624; http://dx.doi.org/10.1021/bi050412q
  • Chu X, Wang J. Specificity and affinity quantification of flexible recognition from underlying energy landscape topography. PLoS Comput Biol 2014; 10:e1003782; PMID:25144525; http://dx.doi.org/10.1371/journal.pcbi.1003782
  • Chu X, Gan L, Wang E, Wang J. Quantifying the topography of the intrinsic energy landscape of flexible biomolecular recognition. Proc Natl Acad Sci U S A 2013; 110:E2342-51; PMID:23754431; http://dx.doi.org/10.1073/pnas.1220699110
  • Iakoucheva LM, Radivojac P, Brown CJ, O'Connor TR, Sikes JG, Obradovic Z, Dunker AK. The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 2004; 32:1037-49; PMID:14960716; http://dx.doi.org/10.1093/nar/gkh253
  • Pejaver V, Hsu WL, Xin F, Dunker AK, Uversky VN, Radivojac P. The structural and functional signatures of proteins that undergo multiple events of post-translational modification. Protein Sci 2014; 23:1077-93; PMID:24888500; http://dx.doi.org/10.1002/pro.2494
  • Harano T, Harano K, Kushida Y, Ueda S, Kawakami H. Hb A2-Niigata [delta 1(NA1)Val—-Ala]: a new delta chain variant found in the Japanese population. Hemoglobin 1991; 15:335-9; http://dx.doi.org/10.3109/03630269109027889
  • Ilesanmi OO. Pathological basis of symptoms and crises in sickle cell disorder: implications for counseling and psychotherapy. Hematol Rep 2010; 2:e2; PMID:22184515; http://dx.doi.org/10.4081/hr.2010.e2
  • Bunn HF. Pathogenesis and treatment of sickle cell disease. N Engl J Med 1997; 337:762-9; PMID:9287233; http://dx.doi.org/10.1056/NEJM199709113371107

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.