1,499
Views
10
CrossRef citations to date
0
Altmetric
Research Paper

Intrinsic disorder in spondins and some of their interacting partners

, , , , &
Article: e1255295 | Received 10 Oct 2016, Accepted 27 Oct 2016, Published online: 15 Dec 2016

References

  • Dunker AK, Garner E, Guilliot S, Romero P, Albrecht K, Hart J, Obradovic Z, Kissinger C, Villafranca JE. Protein disorder and the evolution of molecular recognition: theory, predictions and observations. Pac Symp Biocomput 1998:473-84; PMID:9697205
  • Wright PE, Dyson HJ. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 1999; 293:321-31; PMID:10550212; http://dx.doi.org/10.1006/jmbi.1999.3110
  • Uversky VN, Gillespie JR, Fink AL. Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 2000; 41:415-27; PMID:11025552; http://dx.doi.org/10.1002/1097-0134(20001115)41:3%3c415::AID-PROT130%3e3.0.CO;2-7
  • Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW, et al. Intrinsically disordered protein. J Mol Graph Model 2001; 19:26-59; PMID:11381529; http://dx.doi.org/10.1016/S1093-3263(00)00138-8
  • Tompa P. Intrinsically unstructured proteins. Trends Biochem Sci 2002; 27:527-33; PMID:12368089; http://dx.doi.org/10.1016/S0968-0004(02)02169-2
  • Daughdrill GW, Pielak GJ, Uversky VN, Cortese MS, Dunker AK. Natively disordered proteins. In: Buchner J, Kiefhaber T, eds. Handbook of Protein Folding. Weinheim, Germany: Wiley-VCH, Verlag GmbH & Co. KGaA 2005:271-353
  • Uversky VN, Dunker AK. Understanding protein non-folding. Biochim Biophys Acta 2010; 1804:1231-64; PMID:20117254; http://dx.doi.org/10.1016/j.bbapap.2010.01.017
  • Uversky VN, Dunker AK. The case for intrinsically disordered proteins playing contributory roles in molecular recognition without a stable 3D structure. F1000 Biol Reports 2013; 5:1; PMID:23361308; http://dx.doi.org/10.3410/B5-1
  • Tompa P. Intrinsically disordered proteins: a 10-year recap. Trends Biochem Sci 2012; 37:509-16; PMID:22989858; http://dx.doi.org/10.1016/j.tibs.2012.08.004
  • Uversky VN. A decade and a half of protein intrinsic disorder: biology still waits for physics. Protein Sci 2013; 22:693-724; PMID:23553817; http://dx.doi.org/10.1002/pro.2261
  • van der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW, Dunker AK, Fuxreiter M, Gough J, Gsponer J, Jones DT, et al. Classification of intrinsically disordered regions and proteins. Chem Rev 2014; 114:6589-631; PMID:24773235; http://dx.doi.org/10.1021/cr400525m
  • Habchi J, Tompa P, Longhi S, Uversky VN. Introducing protein intrinsic disorder. Chem Rev 2014; 114:6561-88; PMID:24739139; http://dx.doi.org/10.1021/cr400514h
  • Oldfield CJ, Dunker AK. Intrinsically disordered proteins and intrinsically disordered protein regions. Annual Rev Biochem 2014; 83:553-84; PMID:24606139; http://dx.doi.org/10.1146/annurev-biochem-072711-164947
  • Uversky VN. Dancing protein clouds: The strange biology and chaotic physics of intrinsically disordered proteins. J Biol Chem 2016; 291:6681-8; PMID:26851286; http://dx.doi.org/10.1074/jbc.R115.685859
  • Dunker AK, Brown CJ, Lawson JD, Iakoucheva LM, Obradovic Z. Intrinsic disorder and protein function. Biochemistry 2002; 41:6573-82; PMID:12022860; http://dx.doi.org/10.1021/bi012159
  • Dunker AK, Brown CJ, Obradovic Z. Identification and functions of usefully disordered proteins. Adv Protein Chem 2002; 62:25-49; PMID:12418100; http://dx.doi.org/10.1016/S0065-3233(02)62004-2
  • Uversky VN. Natively unfolded proteins: a point where biology waits for physics. Protein Sci 2002; 11:739-56; PMID:11910019; http://dx.doi.org/10.1110/ps.4210102
  • Uversky VN. What does it mean to be natively unfolded? Eur J Biochem 2002; 269:2-12; PMID:11784292; http://dx.doi.org/10.1046/j.0014-2956.2001.02649.x
  • Uversky VN. Protein folding revisited. A polypeptide chain at the folding-misfolding-nonfolding cross-roads: which way to go? Cell Mol Life Sci 2003; 60:1852-71; PMID:14523548; http://dx.doi.org/10.1007/s00018-003-3096-6
  • Uversky VN. Functional roles of transiently and intrinsically disordered regions within proteins. FEBS J 2015; 282:1182-9; PMID:25631540; http://dx.doi.org/10.1111/febs.13202
  • Iakoucheva LM, Radivojac P, Brown CJ, O'Connor TR, Sikes JG, Obradovic Z, Dunker AK. The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 2004; 32:1037-49; PMID:14960716; http://dx.doi.org/10.1093/nar/gkh253
  • Pejaver V, Hsu WL, Xin F, Dunker AK, Uversky VN, Radivojac P. The structural and functional signatures of proteins that undergo multiple events of post-translational modification. Protein Sci 2014; 23:1077-93; PMID:24888500; http://dx.doi.org/10.1002/pro.2494
  • Romero PR, Zaidi S, Fang YY, Uversky VN, Radivojac P, Oldfield CJ, Cortese MS, Sickmeier M, LeGall T, Obradovic Z, et al. Alternative splicing in concert with protein intrinsic disorder enables increased functional diversity in multicellular organisms. Proc Natl Acad Sci U S A 2006; 103:8390-5; PMID:16717195; http://dx.doi.org/10.1073/pnas.0507916103
  • Buljan M, Chalancon G, Dunker AK, Bateman A, Balaji S, Fuxreiter M, Babu MM. Alternative splicing of intrinsically disordered regions and rewiring of protein interactions. Curr Opin Struct Biol 2013; 23:443-50; PMID:23706950; http://dx.doi.org/10.1016/j.sbi.2013.03.006
  • Buljan M, Chalancon G, Eustermann S, Wagner GP, Fuxreiter M, Bateman A, Babu MM. Tissue-specific splicing of disordered segments that embed binding motifs rewires protein interaction networks. Mol Cell 2012; 46:871-83; PMID:22749400; http://dx.doi.org/10.1016/j.molcel.2012.05.039
  • Uversky VN, Oldfield CJ, Dunker AK. Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu Rev Biophys 2008; 37:215-46; PMID:18573080; http://dx.doi.org/10.1146/annurev.biophys.37.032807.125924
  • Uversky VN, Dave V, Iakoucheva LM, Malaney P, Metallo SJ, Pathak RR, Joerger AC. Pathological unfoldomics of uncontrolled chaos: intrinsically disordered proteins and human diseases. Chem Rev 2014; 114:6844-79; PMID:24830552; http://dx.doi.org/10.1021/cr400713r
  • Uversky VN. Wrecked regulation of intrinsically disordered proteins in diseases: pathogenicity of deregulated regulators. Front Mol Biosci 2014; 1:6; PMID:25988147; http://dx.doi.org/10.3389/fmolb.2014.00006
  • Bornstein P. Diversity of function is inherent in matricellular proteins - an Appraisal of Thrombospondin-1. J Cell Biol 1995; 130:503-6; PMID:7542656; http://dx.doi.org/10.1083/jcb.130.3.503
  • Chen H, Herndon ME, Lawler J. The cell biology of thrombospondin-1. Matrix Biology 2000; 19:597-614; PMID:11102749; http://dx.doi.org/10.1016/S0945-053X(00)00107-4
  • Adams JC. Thrombospondins: multifunctional regulators of cell interactions. Annu Rev Cell Dev Biol 2001; 17:25-51; PMID:11687483; http://dx.doi.org/10.1146/annurev.cellbio.17.1.25
  • Jin YR, Yoon JK. The R-spondin family of proteins: emerging regulators of WNT signaling. Int J Biochem Cell Biol 2012; 44:2278-87; PMID:22982762; http://dx.doi.org/10.1016/j.biocel.2012.09.006
  • Niehrs C. The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol 2012; 13:767-79; PMID:23151663; http://dx.doi.org/10.1038/nrm3470
  • Cruciat CM, Niehrs C. Secreted and transmembrane wnt inhibitors and activators. Cold Spring Harb Perspect Biol 2013; 5:a015081; PMID:23085770; http://dx.doi.org/10.1101/cshperspect.a015081
  • Biason-Lauber A. WNT4, RSPO1, and FOXL2 in sex development. Semin Reprod Med 2012; 30:387-95; PMID:23044875; http://dx.doi.org/10.1055/s-0032-1324722
  • de Lau WB, Snel B, Clevers HC. The R-spondin protein family. Genome Biol 2012; 13:242; PMID:22439850; http://dx.doi.org/10.1186/gb-2012-13-3-242
  • Mah AT, Yan KS, Kuo CJ. Wnt pathway regulation of intestinal stem cells. J Physiol 2016; 594:4837-47; PMID:27581568; http://dx.doi.org/10.1113/JP271754
  • Hao HX, Jiang X, Cong F. Control of wnt receptor turnover by R-spondin-ZNRF3/RNF43 signaling module and its dysregulation in cancer. Cancers (Basel) 2016; 8:54; PMID:27338477; http://dx.doi.org/10.3390/cancers8060054
  • Knight MN, Hankenson KD. R-spondins: novel matricellular regulators of the skeleton. Matrix Biol 2014; 37:157-61; PMID:24980904; http://dx.doi.org/10.1016/j.matbio.2014.06.003
  • de Lau W, Peng WC, Gros P, Clevers H. The R-spondin/Lgr5/Rnf43 module: regulator of Wnt signal strength. Genes Dev 2014; 28:305-16; PMID:24532711; http://dx.doi.org/10.1101/gad.235473.113
  • Rodriguez-Leon J, Tomas AR, Johnson A, Kawakami Y. Recent advances in the study of limb development: the emergence and function of the apical ectodermal ridge. J Stem Cells 2013; 8:79-98; PMID:24698985
  • Fujii M, Sato T. Culturing intestinal stem cells: applications for colorectal cancer research. Front Genet 2014; 5:169; PMID:24926316; http://dx.doi.org/10.3389/fgene.2014.00169
  • Koo BK, Clevers H. Stem cells marked by the R-spondin receptor LGR5. Gastroenterology 2014; 147:289-302; PMID:24859206; http://dx.doi.org/10.1053/j.gastro.2014.05.007
  • Meiniel A, Meiniel R, Goncalves-Mendes N, Creveaux I, Didier R, Dastugue B. The thrombospondin type 1 repeat (TSR) and neuronal differentiation: roles of SCO-spondin oligopeptides on neuronal cell types and cell lines. Int Rev Cytol 2003; 230:1-39; PMID:14692680; http://dx.doi.org/10.1016/S0074-7696(03)30001-4
  • Meiniel A. SCO-spondin, a glycoprotein of the subcommissural organ/Reissner's fiber complex: evidence of a potent activity on neuronal development in primary cell cultures. Microsc Res Tech 2001; 52:484-95; PMID:11241859; http://dx.doi.org/10.1002/1097-0029(20010301)52:5%3c484::AID-JEMT1034%3e3.0.CO;2-0
  • Hoe HS, Rebeck GW. Functional interactions of APP with the apoE receptor family. J Neurochem 2008; 106:2263-71; PMID:18554321; http://dx.doi.org/10.1111/j.1471-4159.2008.05517.x
  • Hoe HS, Rebeck GW. Regulated proteolysis of APP and ApoE receptors. Mol Neurobiol 2008; 37:64-72; PMID:18415033; http://dx.doi.org/10.1007/s12035-008-8017-0
  • Feinstein Y, Klar A. The neuronal class 2 TSR proteins F-spondin and Mindin: a small family with divergent biological activities. Int J Biochem Cell Biol 2004; 36:975-80; PMID:15094111; http://dx.doi.org/10.1016/j.biocel.2004.01.002
  • Kim KA, Kakitani M, Zhao JS, Oshima T, Tang T, Binnerts M, Liu Y, Boyle B, Park E, Emtage P, et al. Mitogenic influence of human R-spondin1 on the intestinal epithelium. Science 2005; 309:1256-9; PMID:16109882; http://dx.doi.org/10.1126/science.1112521
  • Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 2009; 459:262-U147; PMID:19329995; http://dx.doi.org/10.1038/nature07935
  • Kim KA, Wagle M, Tran K, Zhan XM, Dixon MA, Liu SC, Gros D, Korver W, Yonkovich S, Tomasevic N, et al. R-Spondin family members regulate the Wnt pathway by a common mechanism. Mol Biol Cell 2008; 19:2588-96; PMID:18400942; http://dx.doi.org/10.1091/mbc.E08-02-0187
  • Carmon KS, Gong X, Lin QS, Thomas A, Liu QY. R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/β-catenin signaling. Proc Natl Acad Sci U S A 2011; 108:11452-7; PMID:21693646; http://dx.doi.org/10.1073/pnas.1106083108
  • de Lau W, Barker N, Low TY, Koo BK, Li VSW, Teunissen H, Kujala P, Haegebarth A, Peters PJ, van de Wetering M, et al. Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 2011; 476:293-U57; PMID:21727895; http://dx.doi.org/10.1038/nature10337
  • Glinka A, Dolde C, Kirsch N, Huang YL, Kazanskaya O, Ingelfinger D, Boutros M, Cruciat CM, Niehrs C. LGR4 and LGR5 are R-spondin receptors mediating Wnt/β-catenin and Wnt/PCP signalling. EMBO Rep 2011; 12:1055-61; PMID:21909076; http://dx.doi.org/10.1038/embor.2011.175
  • Chen H, Sottile J, Strickland DK, Mosher DF. Binding and degradation of thrombospondin-1 mediated through heparan sulphate proteoglycans and low-density-lipoprotein receptor-related protein: Localization of the functional activity to the trimeric N-terminal heparin-binding region of thrombospondin-1. Biochem J 1996; 318:959-63; PMID:8836144; http://dx.doi.org/10.1042/bj3180959
  • Chen PH, Chen XY, Lin ZH, Fang DY, He XL. The structural basis of R-spondin recognition by LGR5 and RNF43. Genes Dev 2013; 27:1345-50; PMID:23756651; http://dx.doi.org/10.1101/gad.219915.113
  • Nam JS, Turcotte TJ, Smith PF, Choi S, Yoon JK. Mouse cristin/R-spondin family proteins are novel ligands for the Frizzled 8 and LRP6 receptors and activate β-catenin-dependent gene expression. J Biol Chem 2006; 281:13247-57; PMID:16543246; http://dx.doi.org/10.1074/jbc.M508324200
  • Wei Q, Yokota C, Semenov MV, Doble B, Woodgett J, He X. R-spondin1 is a high affinity ligand for LRP6 and induces LRP6 phosphorylation and β-catenin signaling. J Biol Chem 2007; 282:15903-11; PMID:17400545; http://dx.doi.org/10.1074/jbc.M701927200
  • Peng WC, de Lau W, Forneris F, Granneman JC, Huch M, Clevers H, Gros P. Structure of stem cell growth factor R-spondin 1 in complex with the ectodomain of its receptor LGR5. Cell Rep 2013; 3:1885-92; PMID:23809763; http://dx.doi.org/10.1016/j.celrep.2013.06.009
  • Meszaros B, Simon I, Dosztanyi Z. Prediction of protein binding regions in disordered proteins. PLoS Comput Biol 2009; 5:e1000376; PMID:19412530; http://dx.doi.org/10.1371/journal.pcbi.1000376
  • Dosztanyi Z, Meszaros B, Simon I. ANCHOR: web server for predicting protein binding regions in disordered proteins. Bioinformatics 2009; 25:2745-6; PMID:19717576; http://dx.doi.org/10.1093/bioinformatics/btp518
  • Chang CF, Hsu LS, Weng CY, Chen CK, Wang SY, Chou YH, Liu YY, Yuan ZX, Huang WY, Lin H, et al. N-Glycosylation of human R-Spondin 1 is required for efficient secretion and stability but not for its heparin binding ability. Int J Mol Sci 2016; 17:937; PMID:27314333; https://doi.org/10.3390/ijms17060937
  • Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, et al. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 2011; 39:D561-8; PMID:21045058; http://dx.doi.org/10.1093/nar/gkq973
  • Baenziger NL, Brodie GN, Majerus PW. A thrombin-sensitive protein of human platelet membranes. Proc Natl Acad Sci U S A 1971; 68:240-3; PMID:5276296; http://dx.doi.org/10.1073/pnas.68.1.240
  • Li SJ, Yen TY, Endo Y, Klauzinska M, Baljinnyam B, Macher B, Callahan R, Rubin JS. Loss-of-function point mutations and two-furin domain derivatives provide insights about R-spondin2 structure and function. Cell Signal 2009; 21:916-25; PMID:19385064; http://dx.doi.org/10.1016/j.cellsig.2009.02.001
  • Guo NH, Krutzsch HC, Negre E, Vogel T, Blake DA, Roberts DD. Heparin- and sulfatide-binding peptides from the type I repeats of human thrombospondin promote melanoma cell adhesion. Proc Natl Acad Sci U S A 1992; 89:3040-4; PMID:1557410; http://dx.doi.org/10.1073/pnas.89.7.3040
  • Kazanskaya O, Ohkawara B, Heroult M, Wu W, Maltry N, Augustin HG, Niehrs C. The Wnt signaling regulator R-spondin 3 promotes angioblast and vascular development. Development 2008; 135:3655-64; PMID:18842812; http://dx.doi.org/10.1242/dev.027284
  • Gong X, Carmon KS, Lin Q, Thomas A, Yi J, Liu Q. LGR6 is a high affinity receptor of R-spondins and potentially functions as a tumor suppressor. PLoS One 2012; 7:e37137; PMID:22615920; http://dx.doi.org/10.1371/journal.pone.0037137
  • Ruiz i Altaba A, Cox C, Jessell TM, Klar A. Ectopic neural expression of a floor plate marker in frog embryos injected with the midline transcription factor Pintallavis. Proc Natl Acad Sci U S A 1993; 90:8268-72; PMID:8367492; http://dx.doi.org/10.1073/pnas.90.17.8268
  • Klar A, Jessell TM, Ruiz i Altaba A. Control of floor plate identity and function in the embryonic nervous system. Cold Spring Harb Symp Quant Biol 1992; 57:473-82; PMID:1339683; http://dx.doi.org/10.1101/SQB.1992.057.01.052
  • Klar A, Baldassare M, Jessell TM. F-spondin: a gene expressed at high levels in the floor plate encodes a secreted protein that promotes neural cell adhesion and neurite extension. Cell 1992; 69:95-110; PMID:1555244; http://dx.doi.org/10.1016/0092-8674(92)90121-R
  • Higashijima S, Nose A, Eguchi G, Hotta Y, Okamoto H. Mindin/F-spondin family: novel ECM proteins expressed in the zebrafish embryonic axis. Dev Biol 1997; 192:211-27; PMID:9441663; http://dx.doi.org/10.1006/dbio.1997.8760
  • Burstyn-Cohen T, Tzarfaty V, Frumkin A, Feinstein Y, Stoeckli E, Klar A. F-Spondin is required for accurate pathfinding of commissural axons at the floor plate. Neuron 1999; 23:233-46; PMID:10399931; http://dx.doi.org/10.1016/S0896-6273(00)80776-X
  • Miyamoto K, Morishita Y, Yamazaki M, Minamino N, Kangawa K, Matsuo H, Mizutani T, Yamada K, Minegishi T. Isolation and characterization of vascular smooth muscle cell growth promoting factor from bovine ovarian follicular fluid and its cDNA cloning from bovine and human ovary. Arch Biochem Biophys 2001; 390:93-100; PMID:11368520; http://dx.doi.org/10.1006/abbi.2001.2367
  • Schubert D, Klar A, Park M, Dargusch R, Fischer WH. F-spondin promotes nerve precursor differentiation. J Neurochem 2006; 96:444-53; PMID:16300627; http://dx.doi.org/10.1111/j.1471-4159.2005.03563.x
  • Tzarfati-Majar V, Burstyn-Cohen T, Klar A. F-spondin is a contact-repellent molecule for embryonic motor neurons. Proc Natl Acad Sci U S A 2001; 98:4722-7; PMID:11287656; http://dx.doi.org/10.1073/pnas.081062398
  • Akle V, Guelin E, Yu L, Brassard-Giordano H, Slack BE, Zhdanova IV. F-spondin/spon1b expression patterns in developing and adult zebrafish. PLoS One 2012; 7:e37593; PMID:22768035; http://dx.doi.org/10.1371/journal.pone.0037593
  • Burstyn-Cohen T, Frumkin A, Xu YT, Scherer SS, Klar A. Accumulation of F-spondin in injured peripheral nerve promotes the outgrowth of sensory axons. J Neurosci 1998; 18:8875-85; PMID:9786993
  • Ho A, Sudhof TC. Binding of F-spondin to amyloid-β precursor protein: a candidate amyloid-β precursor protein ligand that modulates amyloid-β precursor protein cleavage. Proc Natl Acad Sci U S A 2004; 101:2548-53; PMID:14983046; http://dx.doi.org/10.1073/pnas.0308655100
  • Asch AS, Silbiger S, Heimer E, Nachman RL. Thrombospondin sequence motif (CSVTCG) is responsible for CD36 binding. Biochem Biophys Res Commun 1992; 182:1208-17; PMID:1371676; http://dx.doi.org/10.1016/0006-291X(92)91860-S
  • Tan K, Lawler J. The structure of the Ca(2)+-binding, glycosylated F-spondin domain of F-spondin - A C2-domain variant in an extracellular matrix protein. BMC Struct Biol 2011; 11:22; PMID:21569239; http://dx.doi.org/10.1186/1472-6807-11-22
  • Gonzalez de Peredo A, Klein D, Macek B, Hess D, Peter-Katalinic J, Hofsteenge J. C-mannosylation and o-fucosylation of thrombospondin type 1 repeats. Mol Cell Proteomics 2002; 1:11-8; PMID:12096136; http://dx.doi.org/10.1074/mcp.M100011-MCP200
  • Hofsteenge J, Huwiler KG, Macek B, Hess D, Lawler J, Mosher DF, Peter-Katalinic J. C-mannosylation and O-fucosylation of the thrombospondin type 1 module. J Biol Chem 2001; 276:6485-98; PMID:11067851; http://dx.doi.org/10.1074/jbc.M008073200
  • Nagae M, Nishikawa K, Yasui N, Yamasaki M, Nogi T, Takagi J. Structure of the F-spondin reeler domain reveals a unique β-sandwich fold with a deformable disulfide-bonded loop. Acta Crystallogr D Biol Crystallogr 2008; 64:1138-45; PMID:19020352; http://dx.doi.org/10.1107/S0907444908028308
  • Tan K, Duquette M, Liu JH, Lawler J, Wang JH. The crystal structure of the heparin-binding reelin-N domain of f-spondin. J Mol Biol 2008; 381:1213-23; PMID:18602404; http://dx.doi.org/10.1016/j.jmb.2008.06.045
  • Rizo J, Sudhof TC. C2-domains, structure and function of a universal Ca2+-binding domain. J Biol Chem 1998; 273:15879-82; PMID:9632630; http://dx.doi.org/10.1074/jbc.273.26.15879
  • Tan K, Duquette M, Liu JH, Dong Y, Zhang R, Joachimiak A, Lawler J, Wang JH. Crystal structure of the TSP-1 type 1 repeats: a novel layered fold and its biological implication. J Cell Biol 2002; 159:373-82; PMID:12391027; http://dx.doi.org/10.1083/jcb.200206062
  • Paakkonen K, Tossavainen H, Permi P, Rakkolainen H, Rauvala H, Raulo E, Kilpelainen I, Guntert P. Solution structures of the first and fourth TSR domains of F-spondin. Proteins 2006; 64:665-72; PMID:16736493; http://dx.doi.org/10.1002/prot.21030
  • Manda R, Kohno T, Matsuno Y, Takenoshita S, Kuwano H, Yokota J. Identification of genes (SPON2 and C20orf2) differentially expressed between cancerous and noncancerous lung cells by mRNA differential display. Genomics 1999; 61:5-14; PMID:10512675; http://dx.doi.org/10.1006/geno.1999.5939
  • Zhang Q, Wang XQ, Wang J, Cui SJ, Lou XM, Yan B, Qiao J, Jiang YH, Zhang LJ, Yang PY, et al. Upregulation of spondin-2 predicts poor survival of colorectal carcinoma patients. Oncotarget 2015; 6:15095-110; PMID:25945835; http://dx.doi.org/10.18632/oncotarget.3822
  • Razvi MH, Peng D, Dar AA, Powell SM, Frierson HF, Jr, Moskaluk CA, Washington K, El-Rifai W. Transcriptional oncogenomic hot spots in Barrett's adenocarcinomas: serial analysis of gene expression. Genes Chromosomes Cancer 2007; 46:914-28; PMID:17636545; http://dx.doi.org/10.1002/gcc.20479
  • Ellsworth RE, Seebach J, Field LA, Heckman C, Kane J, Hooke JA, Love B, Shriver CD. A gene expression signature that defines breast cancer metastases. Clin Exp Metastasis 2009; 26:205-13; PMID:19112599; http://dx.doi.org/10.1007/s10585-008-9232-9
  • Rajkumar T, Vijayalakshmi N, Gopal G, Sabitha K, Shirley S, Raja UM, Ramakrishnan SA. Identification and validation of genes involved in gastric tumorigenesis. Cancer Cell Int 2010; 10:45; PMID:21092330; http://dx.doi.org/10.1186/1475-2867-10-45
  • Liao CH, Yeh SC, Huang YH, Chen RN, Tsai MM, Chen WJ, Chi HC, Tai PJ, Liao CJ, Wu SM, et al. Positive regulation of spondin 2 by thyroid hormone is associated with cell migration and invasion. Endocr Relat Cancer 2010; 17:99-111; PMID:19903741; http://dx.doi.org/10.1677/ERC-09-0050
  • Luo JH, Ren B, Keryanov S, Tseng GC, Rao UN, Monga SP, Strom S, Demetris AJ, Nalesnik M, Yu YP, et al. Transcriptomic and genomic analysis of human hepatocellular carcinomas and hepatoblastomas. Hepatology 2006; 44:1012-24; PMID:17006932; http://dx.doi.org/10.1002/hep.21328
  • Anderson GL, McIntosh M, Wu L, Barnett M, Goodman G, Thorpe JD, Bergan L, Thornquist MD, Scholler N, Kim N, et al. Assessing lead time of selected ovarian cancer biomarkers: a nested case-control study. J Natl Cancer Inst 2010; 102:26-38; PMID:20042715; http://dx.doi.org/10.1093/jnci/djp438
  • Simon I, Liu Y, Krall KL, Urban N, Wolfert RL, Kim NW, McIntosh MW. Evaluation of the novel serum markers B7-H4, Spondin 2, and DcR3 for diagnosis and early detection of ovarian cancer. Gynecol Oncol 2007; 106:112-8; PMID:17490732; http://dx.doi.org/10.1016/j.ygyno.2007.03.007
  • Badea L, Herlea V, Dima SO, Dumitrascu T, Popescu I. Combined gene expression analysis of whole-tissue and microdissected pancreatic ductal adenocarcinoma identifies genes specifically overexpressed in tumor epithelia. Hepatogastroenterology 2008; 55:2016-27; PMID:19260470
  • Barbieri CE. Evolution of novel biomarkers for detection of prostate cancer. J Urol 2013; 190:1970-1; PMID:24045221; http://dx.doi.org/10.1016/j.juro.2013.09.018
  • Lucarelli G, Rutigliano M, Bettocchi C, Palazzo S, Vavallo A, Galleggiante V, Trabucco S, Di Clemente D, Selvaggi FP, Battaglia M, et al. Spondin-2, a secreted extracellular matrix protein, is a novel diagnostic biomarker for prostate cancer. J Urol 2013; 190:2271-7; PMID:23665271; http://dx.doi.org/10.1016/j.juro.2013.05.004
  • Kahvecioglu S, Guclu M, Ustundag Y, Gul CB, Dogan I, Dagel T, Esen B, Esen SA, Celik H, Esen I. Evaluation of Serum Spondin 2 Levels in the Different Stages of Type 2 Diabetic Nephropathy. Nephrology (Carlton) 2015; 20:721-6; PMID:25973958; https://doi.org/10.1111/nep.12507
  • Feinstein Y, Borrell V, Garcia C, Burstyn-Cohen T, Tzarfaty V, Frumkin A, Nose A, Okamoto H, Higashijima S, Soriano E, et al. F-spondin and mindin: two structurally and functionally related genes expressed in the hippocampus that promote outgrowth of embryonic hippocampal neurons. Development 1999; 126:3637-48; PMID:10409509
  • He YW, Li H, Zhang J, Hsu CL, Lin E, Zhang N, Guo J, Forbush KA, Bevan MJ. The extracellular matrix protein mindin is a pattern-recognition molecule for microbial pathogens. Nat Immunol 2004; 5:88-97; PMID:14691481; http://dx.doi.org/10.1038/ni1021
  • Li Z, Garantziotis S, Jia W, Potts EN, Lalani S, Liu Z, He YW, Foster WM, Hollingsworth JW. The extracellular matrix protein mindin regulates trafficking of murine eosinophils into the airspace. J Leukoc Biol 2009; 85:124-31; PMID:18818374; http://dx.doi.org/10.1189/jlb.0208135
  • Wang L, Lu Y, Zhang X, Zhang Y, Jiang D, Dong X, Deng S, Yang L, Guan Y, Zhu L, et al. Mindin is a critical mediator of ischemic brain injury in an experimental stroke model. Exp Neurol 2013; 247:506-16; PMID:23360804; http://dx.doi.org/10.1016/j.expneurol.2013.01.022
  • Li Y, Cao C, Jia W, Yu L, Mo M, Wang Q, Huang Y, Lim JM, Ishihara M, Wells L, et al. Structure of the F-spondin domain of mindin, an integrin ligand and pattern recognition molecule. EMBO J 2009; 28:286-97; PMID:19153605; http://dx.doi.org/10.1038/emboj.2008.288
  • Gobron S, Monnerie H, Meiniel R, Creveaux I, Lehmann W, Lamalle D, Dastugue B, Meiniel A. SCO-spondin: a new member of the thrombospondin family secreted by the subcommissural organ is a candidate in the modulation of neuronal aggregation. J Cell Sci 1996; 109(Pt 5):1053-61; PMID:8743952
  • Gobron S, Creveaux I, Meiniel R, Didier R, Herbet A, Bamdad M, El Bitar F, Dastugue B, Meiniel A. Subcommissural organ/Reissner's fiber complex: characterization of SCO-spondin, a glycoprotein with potent activity on neurite outgrowth. Glia 2000; 32:177-91; PMID:11008217; http://dx.doi.org/10.1002/1098-1136(200011)32:2%3c177::AID-GLIA70%3e3.0.CO;2-V
  • Shen G, Ke J, Wang Z, Cheng Z, Gu X, Wei Y, Melcher K, Xu HE, Xu W. Structural basis of the Norrin-Frizzled 4 interaction. Cell Res 2015; 25:1078-81; PMID:26227961; http://dx.doi.org/10.1038/cr.2015.92
  • Kirikoshi H, Sagara N, Koike J, Tanaka K, Sekihara H, Hirai M, Katoh M. Molecular cloning and characterization of human Frizzled-4 on chromosome 11q14-q21. Biochem Biophys Res Commun 1999; 264:955-61; PMID:10544037; http://dx.doi.org/10.1006/bbrc.1999.1612
  • Sasselli V, Boesmans W, Vanden Berghe P, Tissir F, Goffinet AM, Pachnis V. Planar cell polarity genes control the connectivity of enteric neurons. J Clin Invest 2013; 123:1763-72; PMID:23478408; http://dx.doi.org/10.1172/JCI66759
  • Abbruzzese G, Gorny AK, Kaufmann LT, Cousin H, Kleino I, Steinbeisser H, Alfandari D. The Wnt receptor Frizzled-4 modulates ADAM13 metalloprotease activity. J Cell Sci 2015; 128:1139-49; PMID:25616895; http://dx.doi.org/10.1242/jcs.163063
  • Hendrickx M, Leyns L. Non-conventional Frizzled ligands and Wnt receptors. Dev Growth Differ 2008; 50:229-43; PMID:18366384; http://dx.doi.org/10.1111/j.1440-169X.2008.01016.x
  • Chang TH, Hsieh FL, Zebisch M, Harlos K, Elegheert J, Jones EY. Structure and functional properties of Norrin mimic wnt for signalling with Frizzled4, Lrp5/6, and proteoglycan. Elife 2015; 4:e06554; PMID:26158506; http://dx.doi.org/10.7554/elife.06554
  • Saitoh T, Hirai M, Katoh M. Molecular cloning and characterization of human Frizzled-8 gene on chromosome 10p11.2. Int J Oncol 2001; 18:991-6; PMID:11295046
  • Pereira C, Schaer DJ, Bachli EB, Kurrer MO, Schoedon G. Wnt5A/CaMKII signaling contributes to the inflammatory response of macrophages and is a target for the antiinflammatory action of activated protein C and interleukin-10. Arterioscler Thromb Vasc Biol 2008; 28:504-10; PMID:18174455; http://dx.doi.org/10.1161/ATVBAHA.107.157438
  • Hao HX, Xie Y, Zhang Y, Charlat O, Oster E, Avello M, Lei H, Mickanin C, Liu D, Ruffner H, et al. ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. Nature 2012; 485:195-200; PMID:22575959; http://dx.doi.org/10.1038/nature11019
  • Qin H, Cai A, Xi H, Yuan J, Chen L. ZnRF3 induces apoptosis of gastric cancer cells by antagonizing Wnt and Hedgehog signaling. Panminerva Med 2015; 57:167-75; PMID:25923840
  • Zebisch M, Jones EY. ZNRF3/RNF43–A direct linkage of extracellular recognition and E3 ligase activity to modulate cell surface signalling. Prog Biophys Mol Biol 2015; 118:112-8; PMID:25937466; http://dx.doi.org/10.1016/j.pbiomolbio.2015.04.006
  • Planas-Paz L, Orsini V, Boulter L, Calabrese D, Pikiolek M, Nigsch F, Xie Y, Roma G, Donovan A, Marti P, et al. The RSPO-LGR4/5-ZNRF3/RNF43 module controls liver zonation and size. Nat Cell Biol 2016; 18:467-79; PMID:27088858; http://dx.doi.org/10.1038/ncb3337
  • Boomsma W, Nielsen SV, Lindorff-Larsen K, Hartmann-Petersen R, Ellgaard L. Bioinformatics analysis identifies several intrinsically disordered human E3 ubiquitin-protein ligases. PeerJ 2016; 4:e1725; PMID:26966660; http://dx.doi.org/10.7717/peerj.1725
  • Koo BK, Spit M, Jordens I, Low TY, Stange DE, van de Wetering M, van Es JH, Mohammed S, Heck AJ, Maurice MM, et al. Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature 2012; 488:665-9; PMID:22895187; http://dx.doi.org/10.1038/nature11308
  • Sugiura T, Yamaguchi A, Miyamoto K. A cancer-associated RING finger protein, RNF43, is a ubiquitin ligase that interacts with a nuclear protein, HAP95. Exp Cell Res 2008; 314:1519-28; PMID:18313049; http://dx.doi.org/10.1016/j.yexcr.2008.01.013
  • Luo X, Hofmann K. The protease-associated domain: a homology domain associated with multiple classes of proteases. Trends Biochem Sci 2001; 26:147-8; PMID:11246007; http://dx.doi.org/10.1016/S0968-0004(00)01768-0
  • Feng Q, Gao N. Keeping wnt signalosome in check by vesicular traffic. J Cell Physiol 2015; 230:1170-80; PMID:25336320; http://dx.doi.org/10.1002/jcp.24853
  • Tamai K, Semenov M, Kato Y, Spokony R, Liu C, Katsuyama Y, Hess F, Saint-Jeannet JP, He X. LDL-receptor-related proteins in wnt signal transduction. Nature 2000; 407:530-5; PMID:11029007; http://dx.doi.org/10.1038/35035117
  • Zhang L, Yang Y, Li S, Tai Z, Huang L, Liu Y, Zhu X, Di Y, Qu C, Jiang Z, et al. Whole exome sequencing analysis identifies mutations in LRP5 in indian families with familial exudative vitreoretinopathy. Genet Test Mol Biomarkers 2016; 20:346-51; PMID:27228167; http://dx.doi.org/10.1089/gtmb.2015.0322
  • Swiatek W, Kang H, Garcia BA, Shabanowitz J, Coombs GS, Hunt DF, Virshup DM. Negative regulation of LRP6 function by casein kinase I epsilon phosphorylation. J Biol Chem 2006; 281:12233-41; PMID:16513652; http://dx.doi.org/10.1074/jbc.M510580200
  • Mi K, Johnson GV. Regulated proteolytic processing of LRP6 results in release of its intracellular domain. J Neurochem 2007; 101:517-29; PMID:17326769; http://dx.doi.org/10.1111/j.1471-4159.2007.04447.x
  • Abrami L, Kunz B, Iacovache I, van der Goot FG. Palmitoylation and ubiquitination regulate exit of the wnt signaling protein LRP6 from the endoplasmic reticulum. Proc Natl Acad Sci U S A 2008; 105:5384-9; PMID:18378904; http://dx.doi.org/10.1073/pnas.0710389105
  • Jiang X, Cong F. Probing wnt receptor turnover: A critical regulatory point of wnt pathway. Methods Mol Biol 2016; 1481:39-48; PMID:27590150; http://dx.doi.org/10.1007/978-1-4939-6393-5_5
  • Jung H, Lee SK, Jho EH. Mest/Peg1 inhibits Wnt signalling through regulation of LRP6 glycosylation. Biochem J 2011; 436:263-9; PMID:21375506; http://dx.doi.org/10.1042/BJ20101512
  • He X, Semenov M, Tamai K, Zeng X. LDL receptor-related proteins 5 and 6 in Wnt/β-catenin signaling: arrows point the way. Development 2004; 131:1663-77; PMID:15084453; http://dx.doi.org/10.1242/dev.01117
  • Jiao X, Ventruto V, Trese MT, Shastry BS, Hejtmancik JF. Autosomal recessive familial exudative vitreoretinopathy is associated with mutations in LRP5. Am J Hum Genet 2004; 75:878-84; PMID:15346351; http://dx.doi.org/10.1086/425080
  • Hartikka H, Makitie O, Mannikko M, Doria AS, Daneman A, Cole WG, Ala-Kokko L, Sochett EB. Heterozygous mutations in the LDL receptor-related protein 5 (LRP5) gene are associated with primary osteoporosis in children. J Bone Miner Res 2005; 20:783-9; PMID:15824851; http://dx.doi.org/10.1359/JBMR.050101
  • Mizuguchi T, Furuta I, Watanabe Y, Tsukamoto K, Tomita H, Tsujihata M, Ohta T, Kishino T, Matsumoto N, Minakami H, et al. LRP5, low-density-lipoprotein-receptor-related protein 5, is a determinant for bone mineral density. J Hum Genet 2004; 49:80-6; PMID:14727154; http://dx.doi.org/10.1007/s10038-003-0111-6
  • Van Wesenbeeck L, Cleiren E, Gram J, Beals RK, Benichou O, Scopelliti D, Key L, Renton T, Bartels C, Gong Y, et al. Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density. Am J Hum Genet 2003; 72:763-71; PMID:12579474; http://dx.doi.org/10.1086/368277
  • Streeten EA, McBride D, Puffenberger E, Hoffman ME, Pollin TI, Donnelly P, Sack P, Morton H. Osteoporosis-pseudoglioma syndrome: description of 9 new cases and beneficial response to bisphosphonates. Bone 2008; 43:584-90; PMID:18602879; http://dx.doi.org/10.1016/j.bone.2008.04.020
  • Barros ER, Dias da Silva MR, Kunii IS, Hauache OM, Lazaretti-Castro M. A novel mutation in the LRP5 gene is associated with osteoporosis-pseudoglioma syndrome. Osteoporos Int 2007; 18:1017-8; PMID:17437160; http://dx.doi.org/10.1007/s00198-007-0360-x
  • Cheung WM, Jin LY, Smith DK, Cheung PT, Kwan EY, Low L, Kung AW. A family with osteoporosis pseudoglioma syndrome due to compound heterozygosity of two novel mutations in the LRP5 gene. Bone 2006; 39:470-6; PMID:16679074; http://dx.doi.org/10.1016/j.bone.2006.02.069
  • Ai M, Heeger S, Bartels CF, Schelling DK, Osteoporosis-Pseudoglioma Collaborative G. Clinical and molecular findings in osteoporosis-pseudoglioma syndrome. Am J Hum Genet 2005; 77:741-53; PMID:16252235; http://dx.doi.org/10.1086/497706
  • Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, Wang H, Cundy T, Glorieux FH, Lev D, et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 2001; 107:513-23; PMID:11719191; http://dx.doi.org/10.1016/S0092-8674(01)00571-2
  • Boyden LM, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick MA, Wu D, Insogna K, Lifton RP. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 2002; 346:1513-21; PMID:12015390; http://dx.doi.org/10.1056/NEJMoa013444
  • Little RD, Carulli JP, Del Mastro RG, Dupuis J, Osborne M, Folz C, Manning SP, Swain PM, Zhao SC, Eustace B, et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet 2002; 70:11-9; PMID:11741193; http://dx.doi.org/10.1086/338450
  • Johnson ML. The high bone mass family–the role of Wnt/Lrp5 signaling in the regulation of bone mass. J Musculoskelet Neuronal Interact 2004; 4:135-8; PMID:15615112
  • Rickels MR, Zhang X, Mumm S, Whyte MP. Oropharyngeal skeletal disease accompanying high bone mass and novel LRP5 mutation. J Bone Miner Res 2005; 20:878-85; PMID:15824861; http://dx.doi.org/10.1359/JBMR.041223
  • Balemans W, Devogelaer JP, Cleiren E, Piters E, Caussin E, Van Hul W. Novel LRP5 missense mutation in a patient with a high bone mass phenotype results in decreased DKK1-mediated inhibition of Wnt signaling. J Bone Miner Res 2007; 22:708-16; PMID:17295608; http://dx.doi.org/10.1359/jbmr.070211
  • Singh R, Smith E, Fathzadeh M, Liu W, Go GW, Subrahmanyan L, Faramarzi S, McKenna W, Mani A. Rare nonconservative LRP6 mutations are associated with metabolic syndrome. Hum Mutat 2013; 34:1221-5; PMID:23703864; http://dx.doi.org/10.1002/humu.22360
  • Mani A, Radhakrishnan J, Wang H, Mani A, Mani MA, Nelson-Williams C, Carew KS, Mane S, Najmabadi H, Wu D, et al. LRP6 mutation in a family with early coronary disease and metabolic risk factors. Science 2007; 315:1278-82; PMID:17332414; http://dx.doi.org/10.1126/science.1136370
  • Massink MP, Creton MA, Spanevello F, Fennis WM, Cune MS, Savelberg SM, Nijman IJ, Maurice MM, van den Boogaard MJ, van Haaften G. Loss-of-Function Mutations in the WNT Co-receptor LRP6 Cause Autosomal-Dominant Oligodontia. Am J Hum Genet 2015; 97:621-6; PMID:26387593; http://dx.doi.org/10.1016/j.ajhg.2015.08.014
  • Chen S, Bubeck D, MacDonald BT, Liang WX, Mao JH, Malinauskas T, Llorca O, Aricescu AR, Siebold C, He X, et al. Structural and functional studies of LRP6 ectodomain reveal a platform for Wnt signaling. Dev Cell 2011; 21:848-61; PMID:22000855; http://dx.doi.org/10.1016/j.devcel.2011.09.007
  • Stamos JL, Chu ML, Enos MD, Shah N, Weis WI. Structural basis of GSK-3 inhibition by N-terminal phosphorylation and by the Wnt receptor LRP6. Elife 2014; 3:e01998; PMID:24642411; http://dx.doi.org/10.7554/eLife.01998
  • Bourhis E, Tam C, Franke Y, Bazan JF, Ernst J, Hwang J, Costa M, Cochran AG, Hannoush RN. Reconstitution of a frizzled8.Wnt3a.LRP6 signaling complex reveals multiple Wnt and Dkk1 binding sites on LRP6. J Biol Chem 2010; 285:9172-9; PMID:20093360; http://dx.doi.org/10.1074/jbc.M109.092130
  • Mao B, Wu W, Li Y, Hoppe D, Stannek P, Glinka A, Niehrs C. LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature 2001; 411:321-5; PMID:11357136; http://dx.doi.org/10.1038/35077108
  • Zhang Y, Wang Y, Li X, Zhang J, Mao J, Li Z, Zheng J, Li L, Harris S, Wu D. The LRP5 high-bone-mass G171V mutation disrupts LRP5 interaction with Mesd. Mol Cell Biol 2004; 24:4677-84; PMID:15143163; http://dx.doi.org/10.1128/MCB.24.11.4677-4684.2004
  • Binnerts ME, Tomasevic N, Bright JM, Leung J, Ahn VE, Kim KA, Zhan X, Liu S, Yonkovich S, Williams J, et al. The first propeller domain of LRP6 regulates sensitivity to DKK1. Mol Biol Cell 2009; 20:3552-60; PMID:19477926; http://dx.doi.org/10.1091/mbc.E08-12-1252
  • Tang XL, Wang Y, Li DL, Luo J, Liu MY. Orphan G protein-coupled receptors (GPCRs): biological functions and potential drug targets. Acta Pharmacol Sin 2012; 33:363-71; PMID:22367282; http://dx.doi.org/10.1038/aps.2011.210
  • Kong RC, Shilling PJ, Lobb DK, Gooley PR, Bathgate RA. Membrane receptors: structure and function of the relaxin family peptide receptors. Mol Cell Endocrinol 2010; 320:1-15; PMID:20138959; http://dx.doi.org/10.1016/j.mce.2010.02.003
  • MacDonald BT, Semenov MV, Huang H, He X. Dissecting molecular differences between Wnt coreceptors LRP5 and LRP6. PLoS One 2011; 6:e23537; PMID:21887268; http://dx.doi.org/10.1371/journal.pone.0023537
  • Mazerbourg S, Bouley DM, Sudo S, Klein CA, Zhang JV, Kawamura K, Goodrich LV, Rayburn H, Tessier-Lavigne M, Hsueh AJ., Leucine-rich repeat-containing, G protein-coupled receptor 4 null mice exhibit intrauterine growth retardation associated with embryonic and perinatal lethality. Mol Endocrinol 2004; 18:2241-2254; http://dx.doi.org/10.1210/me.2004-0133
  • Weng J, Luo J, Cheng X, Jin C, Zhou X, Qu J, Tu L, Ai D, Li D, Wang J, et al. Deletion of G protein-coupled receptor 48 leads to ocular anterior segment dysgenesis (ASD) through down-regulation of Pitx2. Proc Natl Acad Sci U S A 2008; 105:6081-6; PMID:18424556; http://dx.doi.org/10.1073/pnas.0708257105
  • Shpakov AO. Structural-functional organization of polypeptide hormones receptors containing LRR-repeats and their interaction with heterotrimeric G proteins. Tsitologiia 2009; 51:637-49; PMID:19799348
  • Yamashita R, Takegawa Y, Sakumoto M, Nakahara M, Kawazu H, Hoshii T, Araki K, Yokouchi Y, Yamamura K. Defective development of the gall bladder and cystic duct in Lgr4- hypomorphic mice. Dev Dyn 2009; 238:993-1000; PMID:19301403; http://dx.doi.org/10.1002/dvdy.21900
  • Mendive F, Laurent P, Van Schoore G, Skarnes W, Pochet R, Vassart G. Defective postnatal development of the male reproductive tract in LGR4 knockout mice. Dev Biol 2006; 290:421-34; PMID:16406039; http://dx.doi.org/10.1016/j.ydbio.2005.11.043
  • Luo J, Zhou W, Zhou X, Li D, Weng J, Yi Z, Cho SG, Li C, Yi T, Wu X, et al. Regulation of bone formation and remodeling by G-protein-coupled receptor 48. Development 2009; 136:2747-56; PMID:19605502; http://dx.doi.org/10.1242/dev.033571
  • Mohri Y, Kato S, Umezawa A, Okuyama R, Nishimori K. Impaired hair placode formation with reduced expression of hair follicle-related genes in mice lacking Lgr4. Dev Dyn 2008; 237:2235-42; PMID:18651655; http://dx.doi.org/10.1002/dvdy.21639
  • Mazerbourg S, Bouley DM, Sudo S, Klein CA, Zhang JV, Kawamura K, Goodrich LV, Rayburn H, Tessier-Lavigne M, Hsueh AJ. Leucine-rich repeat-containing, G protein-coupled receptor 4 null mice exhibit intrauterine growth retardation associated with embryonic and perinatal lethality. Mol Endocrinol 2004; 18:2241-54; PMID:15192078; http://dx.doi.org/10.1210/me.2004-0133
  • Jaks V, Barker N, Kasper M, van Es JH, Snippert HJ, Clevers H, Toftgard R. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat Genet 2008; 40:1291-9; PMID:18849992; http://dx.doi.org/10.1038/ng.239
  • Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007; 449:1003-7; PMID:17934449; http://dx.doi.org/10.1038/nature06196
  • Morita H, Mazerbourg S, Bouley DM, Luo CW, Kawamura K, Kuwabara Y, Baribault H, Tian H, Hsueh AJ. Neonatal lethality of LGR5 null mice is associated with ankyloglossia and gastrointestinal distension. Mol Cell Biol 2004; 24:9736-43; PMID:15509778; http://dx.doi.org/10.1128/MCB.24.22.9736-9743.2004
  • Snippert HJ, Haegebarth A, Kasper M, Jaks V, van Es JH, Barker N, van de Wetering M, van den Born M, Begthel H, Vries RG, et al. Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 2010; 327:1385-9; PMID:20223988; http://dx.doi.org/10.1126/science.1184733
  • Gao Y, Kitagawa K, Hiramatsu Y, Kikuchi H, Isobe T, Shimada M, Uchida C, Hattori T, Oda T, Nakayama K, et al. Upregulation of GPR48 induced by down-regulation of p27Kip1 enhances carcinoma cell invasiveness and metastasis. Cancer Res 2006; 66:11623-31; PMID:17178856; http://dx.doi.org/10.1158/0008-5472.CAN-06-2629
  • McClanahan T, Koseoglu S, Smith K, Grein J, Gustafson E, Black S, Kirschmeier P, Samatar AA. Identification of overexpression of orphan G protein-coupled receptor GPR49 in human colon and ovarian primary tumors. Cancer Biol Ther 2006; 5:419-26; PMID:16575208; http://dx.doi.org/10.4161/cbt.5.4.2521
  • Tanese K, Fukuma M, Yamada T, Mori T, Yoshikawa T, Watanabe W, Ishiko A, Amagai M, Nishikawa T, Sakamoto M. G-protein-coupled receptor GPR49 is up-regulated in basal cell carcinoma and promotes cell proliferation and tumor formation. Am J Pathol 2008; 173:835-43; PMID:18688030; http://dx.doi.org/10.2353/ajpath.2008.071091
  • Abo A, Clevers H. Modulating Wnt receptor turnover for tissue repair. Nat Biotechnol 2012; 30:835-6; PMID:22965053; http://dx.doi.org/10.1038/nbt.2361
  • Barker N, Clevers H. Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells. Gastroenterology 2010; 138:1681-96; PMID:20417836; http://dx.doi.org/10.1053/j.gastro.2010.03.002
  • Wang D, Huang B, Zhang S, Yu X, Wu W, Wang X. Structural basis for R-spondin recognition by LGR4/5/6 receptors. Genes Dev 2013; 27:1339-44; PMID:23756652; http://dx.doi.org/10.1101/gad.219360.113
  • Di Domenico T, Walsh I, Martin AJ, Tosatto SC. MobiDB: a comprehensive database of intrinsic protein disorder annotations. Bioinformatics 2012; 28:2080-1; PMID:22661649; http://dx.doi.org/10.1093/bioinformatics/bts327
  • Potenza E, Domenico TD, Walsh I, Tosatto SC. MobiDB 2.0: an improved database of intrinsically disordered and mobile proteins. Nucleic Acids Res 2015; 43:D315-20; PMID:25361972; http://dx.doi.org/10.1093/nar/gku982
  • Dosztanyi Z, Csizmok V, Tompa P, Simon I. IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 2005; 21:3433-4; PMID:15955779; http://dx.doi.org/10.1093/bioinformatics/bti541
  • Walsh I, Martin AJ, Di Domenico T, Tosatto SC. ESpritz: accurate and fast prediction of protein disorder. Bioinformatics 2012; 28:503-9; PMID:22190692; http://dx.doi.org/10.1093/bioinformatics/btr682
  • Linding R, Jensen LJ, Diella F, Bork P, Gibson TJ, Russell RB. Protein disorder prediction: implications for structural proteomics. Structure 2003; 11:1453-9; PMID:14604535; http://dx.doi.org/10.1016/j.str.2003.10.002
  • Yang ZR, Thomson R, McNeil P, Esnouf RM. RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics 2005; 21:3369-76; PMID:15947016; http://dx.doi.org/10.1093/bioinformatics/bti534
  • Obradovic Z, Peng K, Vucetic S, Radivojac P, Dunker AK. Exploiting heterogeneous sequence properties improves prediction of protein disorder. Proteins 2005; 61 Suppl 7:176-82; PMID:16187360; http://dx.doi.org/10.1002/prot.20735
  • Peng K, Radivojac P, Vucetic S, Dunker AK, Obradovic Z. Length-dependent prediction of protein intrinsic disorder. Bmc Bioinformatics 2006; 7:208; PMID:16618368; http://dx.doi.org/10.1186/1471-2105-7-208
  • Linding R, Russell RB, Neduva V, Gibson TJ. GlobPlot: exploring protein sequences for globularity and disorder. Nucleic Acids Res 2003; 31:3701-8; PMID:12824398; http://dx.doi.org/10.1093/nar/gkg519
  • Reeves R, Nissen MS. Purification and assays for high mobility group HMG-I(Y) protein function. Methods Enzymol 1999; 304:155-88; PMID:10372360; http://dx.doi.org/10.1016/S0076-6879(99)04011-2
  • Stewart AA, Ingebritsen TS, Cohen P. The protein phosphatases involved in cellular regulation. Five. Purification and properties of a Ca2+/calmodulin-dependent protein phosphatase (2B) from rabbit skeletal muscle. Eur J Biochem 1983; 132:289-95; PMID:6301828; http://dx.doi.org/10.1111/j.1432-1033.1983.tb07361.x
  • Bandaru V, Cooper W, Wallace SS, Doublie S. Overproduction, crystallization and preliminary crystallographic analysis of a novel human DNA-repair enzyme that recognizes oxidative DNA damage. Acta Crystallogr D Biol Crystallogr 2004; 60:1142-4; PMID:15159582; http://dx.doi.org/10.1107/S0907444904007929
  • Petros AM, Medek A, Nettesheim DG, Kim DH, Yoon HS, Swift K, Matayoshi ED, Oltersdorf T, Fesik SW. Solution structure of the antiapoptotic protein bcl-2. Proc Natl Acad Sci USA2001; 98:3012-7; PMID:11248023; http://dx.doi.org/10.1073/pnas.041619798
  • Oldfield CJ, Xue B, Van YY, Ulrich EL, Markley JL, Dunker AK, Uversky VN. Utilization of protein intrinsic disorder knowledge in structural proteomics. Biochim Biophys Acta 2012; 1834:487-98; PMID:23232152; http://dx.doi.org/10.1016/j.bbapap.2012.12.003
  • Harauz G, Ishiyama N, Hill CM, Bates IR, Libich DS, Fares C. Myelin basic protein-diverse conformational states of an intrinsically unstructured protein and its roles in myelin assembly and multiple sclerosis. Micron 2004; 35:503-42; PMID:15219899; http://dx.doi.org/10.1016/j.micron.2004.04.005
  • Bailey RW, Dunker AK, Brown CJ, Garner EC, Griswold MD. Clusterin, a binding protein with a molten globule-like region. Biochemistry 2001; 40:11828-40; PMID:11570883; http://dx.doi.org/10.1021/bi010135x
  • Iakoucheva LM, Kimzey AL, Masselon CD, Bruce JE, Garner EC, Brown CJ, Dunker AK, Smith RD, Ackerman EJ. Identification of intrinsic order and disorder in the DNA repair protein XPA. Protein Sci 2001; 10:560-71; PMID:11344324; http://dx.doi.org/10.1110/ps.29401
  • Daughdrill GW, Chadsey MS, Karlinsey JE, Hughes KT, Dahlquist FW. The C-terminal half of the anti-sigma factor, FlgM, becomes structured when bound to its target, sigma 28. Nat Struct Biol 1997; 4:285-91; PMID:9095196; http://dx.doi.org/10.1038/nsb0497-285
  • Cary PD, King DS, Crane-Robinson C, Bradbury EM, Rabbani A, Goodwin GH, Johns EW. Structural studies on two high-mobility-group proteins from calf thymus, HMG-14 and HMG-20 (ubiquitin), and their interaction with DNA. Eur J Biochem 1980; 112:577-80; PMID:6257511; http://dx.doi.org/10.1111/j.1432-1033.1980.tb06123.x
  • Smithers B, Oates ME, Tompa P, Gough J. Three reasons protein disorder analysis makes more sense in the light of collagen. Protein Sci 2016; 25:1030-6; PMID:26941008; http://dx.doi.org/10.1002/pro.2913
  • Peysselon F, Xue B, Uversky VN, Ricard-Blum S. Intrinsic disorder of the extracellular matrix. Mol Biosyst 2011; 7:3353-65; PMID:22009114; http://dx.doi.org/10.1039/c1mb05316g
  • Shatsky M, Nussinov R, Wolfson HJ. A method for simultaneous alignment of multiple protein structures. Proteins 2004; 56:143-56; PMID:15162494; http://dx.doi.org/10.1002/prot.10628
  • Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graphics 1996; 14:33-8, 27–8; http://dx.doi.org/10.1016/0263-7855(96)00018-5
  • Oates ME, Romero P, Ishida T, Ghalwash M, Mizianty MJ, Xue B, Dosztanyi Z, Uversky VN, Obradovic Z, Kurgan L, et al. D(2)P(2): database of disordered protein predictions. Nucleic Acids Res 2013; 41:D508-16; PMID:23203878; http://dx.doi.org/10.1093/nar/gks1226
  • Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, Dunker AK. Sequence complexity of disordered protein. Proteins 2001; 42:38-48; PMID:11093259; http://dx.doi.org/10.1002/1097-0134(20010101)42:1%3c38::AID-PROT50%3e3.0.CO;2-3
  • Ishida T, Kinoshita K. PrDOS: prediction of disordered protein regions from amino acid sequence. Nucleic Acids Res 2007; 35:W460-4; PMID:17567614; http://dx.doi.org/10.1093/nar/gkm363

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.