3,661
Views
80
CrossRef citations to date
0
Altmetric
Methods and Technical Advances

How disordered is my protein and what is its disorder for? A guide through the “dark side” of the protein universe

, , , , &
Article: e1259708 | Received 22 Sep 2016, Accepted 04 Nov 2016, Published online: 21 Dec 2016

References

  • Dunker AK, Babu MM, Barbar E, Blackledge M, Bondos SE, Dosztányi Z, Dyson HJ, Forman-Kay J, Fuxreiter M, Gsponer J, et al. What's in a name? Why these proteins are intrinsically disordered. Intrinsically Disordered Proteins 2013; 1:e24157; http://dx.doi.org/10.4161/idp.24157
  • Dunker AK, Obradovic Z, Romero P, Garner EC, Brown CJ. Intrinsic protein disorder in complete genomes. Genome Inform Ser Workshop Genome Inform 2000; 11:161-71; PMID:11700597
  • Uversky VN. The mysterious unfoldome: structureless, underappreciated, yet vital part of any given proteome. J Biomed Biotechnol 2010; 2010:568068; PMID:20011072; http://dx.doi.org/10.1155/2010/568068
  • Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT. Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 2004; 337:635-45; PMID:15019783; http://dx.doi.org/10.1016/j.jmb.2004.02.002
  • Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW, et al. Intrinsically disordered protein. J Mol Graph Model 2001; 19:26-59; PMID:11381529; http://dx.doi.org/10.1016/S1093-3263(00)00138-8
  • Uversky VN, Dunker AK. Understanding protein non-folding. Biochim Biophys Acta 2010; 1804:1231-64; PMID:20117254; http://dx.doi.org/10.1016/j.bbapap.2010.01.017
  • Xue B, Dunker AK, Uversky VN. Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteomes from viruses and the three domains of life. J Biomol Struct Dyn 2012; 30:137-49; PMID:22702725; http://dx.doi.org/10.1080/07391102.2012.675145
  • Peng Z, Yan J, Fan X, Mizianty MJ, Xue B, Wang K, Hu G, Uversky VN, Kurgan L. Exceptionally abundant exceptions: comprehensive characterization of intrinsic disorder in all domains of life. Cell Mol Life Sci 2015; 72:137-51; PMID:24939692; http://dx.doi.org/10.1007/s00018-014-1661-9
  • Bogatyreva NS, Finkelstein AV, Galzitskaya OV. Trend of amino acid composition of proteins of different taxa. J Bioinform Comput Biol 2006; 4:597-608; PMID:16819805; http://dx.doi.org/10.1142/S0219720006002016
  • Obradovic Z, Peng K, Vucetic S, Radivojac P, Brown CJ, Dunker AK. Predicting intrinsic disorder from amino acid sequence. Proteins 2003; 53:566-72; PMID:14579347; http://dx.doi.org/10.1002/prot.10532
  • Piovesan D, Tabaro F, Micetic I, Necci M, Quaglia F, Oldfield CJ, Aspromonte MC, Davey N, Davidovic R, Dosztanyi Z, et al. DisProt 7.0: A major update of the database of disordered proteins. Nucleic Acids Res; PMID:27899601; http://dx.doi.org/10.1093/nar/gkw1056
  • Monastyrskyy B, Kryshtafovych A, Moult J, Tramontano A, Fidelis K. Assessment of protein disorder region predictions in CASP10. Proteins 2014; 82 Suppl 2:127-37; PMID:23946100; http://dx.doi.org/10.1002/prot.24391
  • Monastyrskyy B, Fidelis K, Moult J, Tramontano A, Kryshtafovych A. Evaluation of disorder predictions in CASP9. Proteins 2011; 79 Suppl 10:107-18; PMID:21928402; http://dx.doi.org/10.1002/prot.23161
  • Fischer E. Einfluss der configuration auf die wirkung der enzyme. Ber Dt Chem Ges 1894; 27:2985-93; http://dx.doi.org/10.1002/cber.18940270364
  • Perdigao N, Heinrich J, Stolte C, Sabir KS, Buckley MJ, Tabor B, Signal B, Gloss BS, Hammang CJ, Rost B, et al. Unexpected features of the dark proteome. Proc Natl Acad Sci U S A 2015; 112:15898-903; PMID:26578815; http://dx.doi.org/10.1073/pnas.1508380112
  • Dunker AK, Garner E, Guilliot S, Romero P, Albrecht K, Hart J, Obradovic Z, Kissinger C, Villafranca JE. Protein disorder and the evolution of molecular recognition: theory, predictions and observations. Pac Symp Biocomput 1998:473-84; PMID:9697205
  • Wright PE, Dyson HJ. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 1999; 293:321-31; PMID:10550212; http://dx.doi.org/10.1006/jmbi.1999.3110
  • Uversky VN, Gillespie JR, Fink AL. Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 2000; 41:415-27; PMID:11025552; http://dx.doi.org/10.1002/1097-0134(20001115)41:3%3c415::AID-PROT130%3e3.0.CO;2-7
  • Tompa P. Intrinsically unstructured proteins. Trends Biochem Sci 2002; 27:527-33; PMID:12368089; http://dx.doi.org/10.1016/S0968-0004(02)02169-2
  • Daughdrill GW, Pielak GJ, Uversky VN, Cortese MS, Dunker AK. Natively disordered proteins. In: Buchner J, Kiefhaber T, eds. Handbook of Protein Folding. Weinheim, Germany: Wiley-VCH, Verlag GmbH & Co. KGaA, 2005, 271-353.
  • Uversky VN. Unusual biophysics of intrinsically disordered proteins. Biochim Biophys Acta 2013; 1834:932-51; PMID:23269364; http://dx.doi.org/10.1016/j.bbapap.2012.12.008
  • Uversky VN. Protein folding revisited. A polypeptide chain at the folding-misfolding-nonfolding cross-roads: which way to go? Cell Mol Life Sci 2003; 60:1852-71; PMID:14523548; http://dx.doi.org/10.1007/s00018-003-3096-6
  • Zhang T, Faraggi E, Li Z, Zhou Y. Intrinsically semi-disordered state and its role in induced folding and protein aggregation. Cell Biochem Biophys 2013; 67:1193-205; PMID:23723000; http://dx.doi.org/10.1007/s12013-013-9638-0
  • Uversky VN. A decade and a half of protein intrinsic disorder: biology still waits for physics. Protein Sci 2013; 22:693-724; PMID:23553817; http://dx.doi.org/10.1002/pro.2261
  • Uversky VN. Natively unfolded proteins: a point where biology waits for physics. Protein Sci 2002; 11:739-56; PMID:11910019; http://dx.doi.org/10.1110/ps.4210102
  • Bracken C, Iakoucheva LM, Romero PR, Dunker AK. Combining prediction, computation and experiment for the characterization of protein disorder. Curr Opin Struct Biol 2004; 14:570-6; PMID:15465317; http://dx.doi.org/10.1016/j.sbi.2004.08.003
  • Receveur-Brechot V, Bourhis JM, Uversky VN, Canard B, Longhi S. Assessing protein disorder and induced folding. Proteins 2006; 62:24-45; PMID:16287116; http://dx.doi.org/10.1002/prot.20750
  • Uversky VN, Dunker AK. Multiparametric analysis of intrinsically disordered proteins: looking at intrinsic disorder through compound eyes. Anal Chem 2012; 84:2096-104; PMID:22242801; http://dx.doi.org/10.1021/ac203096k
  • Uversky VN. Biophysical Methods to Investigate Intrinsically Disordered Proteins: Avoiding an “Elephant and Blind Men” Situation. Adv Exp Med Biol 2015; 870:215-60; PMID:26387104; http://dx.doi.org/10.1007/978-3-319-20164-1_7
  • Dyson HJ, Wright PE. Insights into the structure and dynamics of unfolded proteins from nuclear magnetic resonance. Adv Protein Chem 2002; 62:311-40; PMID:12418108; http://dx.doi.org/10.1016/S0065-3233(02)62012-1
  • Dyson HJ, Wright PE. Unfolded proteins and protein folding studied by NMR. Chem Rev 2004; 104:3607-22; PMID:15303830; http://dx.doi.org/10.1021/cr030403s
  • Dyson HJ, Wright PE. Elucidation of the protein folding landscape by NMR. Methods Enzymol 2005; 394:299-321; PMID:15808225; http://dx.doi.org/10.1016/S0076-6879(05)94011-1
  • Ringe D, Petsko GA. Study of protein dynamics by X-ray diffraction. Methods Enzymol 1986; 131:389-433; PMID:3773767; http://dx.doi.org/10.1016/0076-6879(86)31050-4
  • Adler AJ, Greenfield NJ, Fasman GD. Circular dichroism and optical rotatory dispersion of proteins and polypeptides. Methods Enzymol 1973; 27:675-735; PMID:4797940; http://dx.doi.org/10.1016/S0076-6879(73)27030-1
  • Fasman GD. Circular dichroism and the conformational analysis of biomolecules. New York: Plenem Press, 1996.
  • Provencher SW, Glockner J. Estimation of globular protein secondary structure from circular dichroism. Biochemistry 1981; 20:33-7; PMID:7470476; http://dx.doi.org/10.1021/bi00504a006
  • Woody RW. Circular dichroism. Methods Enzymol 1995; 246:34-71; PMID:7538625; http://dx.doi.org/10.1016/0076-6879(95)46006-3
  • Smyth E, Syme CD, Blanch EW, Hecht L, Vasak M, Barron LD. Solution structure of native proteins with irregular folds from Raman optical activity. Biopolymers 2001; 58:138-51; PMID:11093113; http://dx.doi.org/10.1002/1097-0282(200102)58:2%3c138::AID-BIP30%3e3.0.CO;2-W
  • Glatter O, Kratky O. Small angle X-ray scattering. London: Academic Press, 1982.
  • Uversky VN. A multiparametric approach to studies of self-organization of globular proteins. Biochemistry (Mosc) 1999; 64:250-66; PMID:10205295
  • Iakoucheva LM, Kimzey AL, Masselon CD, Smith RD, Dunker AK, Ackerman EJ. Aberrant mobility phenomena of the DNA repair protein XPA. Protein Sci 2001; 10:1353-62; PMID:11420437; http://dx.doi.org/10.1110/ps.40101
  • Tompa P. Intrinsically unstructured proteins. Trends Biochem Sci 2002; 27; PMID:11796221
  • Markus G. Protein substrate conformation and proteolysis. Proc Natl Acad Sci U S A 1965; 54:253-8; PMID:5216360; http://dx.doi.org/10.1073/pnas.54.1.253
  • Mikhalyi E. Application of proteolytic enzymes to protein structure studies. Boca Raton: CRC Press, 1978.
  • Hubbard SJ, Eisenmenger F, Thornton JM. Modeling studies of the change in conformation required for cleavage of limited proteolytic sites. Protein Sci 1994; 3:757-68; PMID:7520312; http://dx.doi.org/10.1002/pro.5560030505
  • Fontana A, de Laureto PP, de Filippis V, Scaramella E, Zambonin M. Probing the partly folded states of proteins by limited proteolysis. Fold Des 1997; 2:R17-R26; PMID:9135978; http://dx.doi.org/10.1016/S1359-0278(97)00010-2
  • Fontana A, de Laureto PP, Spolaore B, Frare E, Picotti P, Zambonin M. Probing protein structure by limited proteolysis. Acta Biochim Pol 2004; 51:299-321; PMID:15218531
  • Park C, Marqusee S. Pulse proteolysis: a simple method for quantitative determination of protein stability and ligand binding. Nat Methods 2005; 2:207-12; PMID:15782190; http://dx.doi.org/10.1038/nmeth740
  • Feng Y, De Franceschi G, Kahraman A, Soste M, Melnik A, Boersema PJ, de Laureto PP, Nikolaev Y, Oliveira AP, Picotti P. Global analysis of protein structural changes in complex proteomes. Nat Biotechnol 2014; 32:1036-44; PMID:25218519; http://dx.doi.org/10.1038/nbt.2999
  • Minde DP, Maurice MM, Rudiger SG. Determining biophysical protein stability in lysates by a fast proteolysis assay, FASTpp. PLoS One 2012; 7:e46147; PMID:23056252; http://dx.doi.org/10.1371/journal.pone.0046147
  • Privalov PL. Stability of proteins: small globular proteins. Adv Protein Chem 1979; 33:167-241; PMID:44431; http://dx.doi.org/10.1016/S0065-3233(08)60460-X
  • Ptitsyn O. Molten globule and protein folding. Adv Protein Chem 1995; 47:83-229; PMID:8561052; http://dx.doi.org/10.1016/S0065-3233(08)60546-X
  • Ptitsyn OB, Uversky VN. The molten globule is a third thermodynamical state of protein molecules. FEBS Lett 1994; 341:15-8; PMID:8137915; http://dx.doi.org/10.1016/0014-5793(94)80231-9
  • Uversky VN, Ptitsyn OB. All-or-none solvent-induced transitions between native, molten globule and unfolded states in globular proteins. Fold Des 1996; 1:117-22; PMID:9079371; http://dx.doi.org/10.1016/S1359-0278(96)00020-X
  • Westhof E, Altschuh D, Moras D, Bloomer AC, Mondragon A, Klug A, Van Regenmortel MH. Correlation between segmental mobility and the location of antigenic determinants in proteins. Nature 1984; 311:123-6; PMID:6206398; http://dx.doi.org/10.1038/311123a0
  • Berzofsky JA. Intrinsic and extrinsic factors in protein antigenic structure. Science 1985; 229:932-40; PMID:2410982; http://dx.doi.org/10.1126/science.2410982
  • Miyagi A, Tsunaka Y, Uchihashi T, Mayanagi K, Hirose S, Morikawa K, Ando T. Visualization of intrinsically disordered regions of proteins by high-speed atomic force microscopy. Chemphyschem 2008; 9:1859-66; PMID:18698566; http://dx.doi.org/10.1002/cphc.200800210
  • Ishino S, Yamagami T, Kitamura M, Kodera N, Mori T, Sugiyama S, Ando T, Goda N, Tenno T, Hiroaki H, et al. Multiple interactions of the intrinsically disordered region between the helicase and nuclease domains of the archaeal Hef protein. J Biol Chem 2014; 289:21627-39; PMID:24947516; http://dx.doi.org/10.1074/jbc.M114.554998
  • Oroz J, Hervas R, Valbuena A, Carrion-Vazquez M. Unequivocal single-molecule force spectroscopy of intrinsically disordered proteins. Methods Mol Biol 2012; 896:71-87; PMID:22821518
  • Solanki A, Neupane K, Woodside MT. Single-molecule force spectroscopy of rapidly fluctuating, marginally stable structures in the intrinsically disordered protein alpha-synuclein. Phys Rev Lett 2014; 112:158103; PMID:24785077; http://dx.doi.org/10.1103/PhysRevLett.112.158103
  • Neupane K, Solanki A, Sosova I, Belov M, Woodside MT. Diverse metastable structures formed by small oligomers of alpha-synuclein probed by force spectroscopy. PLoS ONE 2014; 9:e86495; PMID:24475132; http://dx.doi.org/10.1371/journal.pone.0086495
  • Elmlund D, Elmlund H. Cryogenic electron microscopy and single-particle analysis. Annu Rev Biochem 2015; 84:499-517; PMID:25747402; http://dx.doi.org/10.1146/annurev-biochem-060614-034226
  • Keller PW, Huang RK, England MR, Waki K, Cheng N, Heymann JB, Craven RC, Freed EO, Steven AC. A two-pronged structural analysis of retroviral maturation indicates that core formation proceeds by a disassembly-reassembly pathway rather than a displacive transition. J Virol 2013; 87:13655-64; PMID:24109217; http://dx.doi.org/10.1128/JVI.01408-13
  • Wu W, Leavitt JC, Cheng N, Gilcrease EB, Motwani T, Teschke CM, Casjens SR, Steven AC. Localization of the Houdinisome (Ejection Proteins) inside the Bacteriophage P22 Virion by Bubblegram Imaging. MBio 2016; 7:e01152-16; PMID:27507825; http://dx.doi.org/10.1128/mBio.01152-16
  • Uversky VN. The multifaceted roles of intrinsic disorder in protein complexes. FEBS letters 2015; 589:2498-2506; PMID:26073257; http://dx.doi.org/10.1016/j.febslet.2015.06.004
  • Haynes C, Oldfield CJ, Ji F, Klitgord N, Cusick ME, Radivojac P, Uversky VN, Vidal M, Iakoucheva LM. Intrinsic disorder is a common feature of hub proteins from four eukaryotic interactomes. PLoS Comput Biol 2006; 2:e100; PMID:16884331; http://dx.doi.org/10.1371/journal.pcbi.0020100
  • Habchi J, Tompa P, Longhi S, Uversky VN. Introducing Protein Intrinsic Disorder. Chem Rev 2014; 114:6561-88; PMID:24739139; http://dx.doi.org/10.1021/cr400514h
  • Lobley A, Swindells MB, Orengo CA, Jones DT. Inferring function using patterns of native disorder in proteins. PLoS Comput Biol 2007; 3:e162; PMID:17722973; http://dx.doi.org/10.1371/journal.pcbi.0030162
  • Ferron F, Longhi S, Canard B, Karlin D. A practical overview of protein disorder prediction methods. Proteins 2006; 65:1-14; PMID:16856179; http://dx.doi.org/10.1002/prot.21075
  • Ferron F, Rancurel C, Longhi S, Cambillau C, Henrissat B, Canard B. VaZyMolO: a tool to define and classify modularity in viral proteins. J Gen Virol 2005; 86:743-9; PMID:15722535; http://dx.doi.org/10.1099/vir.0.80590-0
  • Lieutaud P, Ferron F, Habchi J, Canard B, Longhi S. Predicting protein disorder and induced folding : a practical approach. In: Dunn B, ed. Advances in Protein and Peptide Sciences. Bentham Science Publishers, 2013:441-92 (52).
  • Atkins JD, Boateng SY, Sorensen T, McGuffin LJ. Disorder Prediction Methods, Their Applicability to Different Protein Targets and Their Usefulness for Guiding Experimental Studies. Int J Mol Sci 2015; 16:19040-54; PMID:26287166; http://dx.doi.org/10.3390/ijms160819040
  • Mizianty MJ, Kurgan L. Sequence-based prediction of protein crystallization, purification and production propensity. Bioinformatics 2011; 27:i24-33; PMID:21685077; http://dx.doi.org/10.1093/bioinformatics/btr229
  • Mizianty MJ, Kurgan LA. CRYSpred: accurate sequence-based protein crystallization propensity prediction using sequence-derived structural characteristics. Protein Peptide Lett 2012; 19:40-9; http://dx.doi.org/10.2174/092986612798472910
  • Wang H, Feng L, Zhang Z, Webb GI, Lin D, Song J. Crysalis: an integrated server for computational analysis and design of protein crystallization. Sci Rep 2016; 6:21383; PMID:26906024; http://dx.doi.org/10.1038/srep21383
  • Bourhis JM, Canard B, Longhi S. Predicting protein disorder and induced folding: from theoretical principles to practical applications. Curr Protein Pept Sci 2007; 8:135-49; PMID:17430195; http://dx.doi.org/10.2174/138920307780363451
  • Uversky VN, Radivojac P, Iakoucheva LM, Obradovic Z, Dunker AK. Prediction of intrinsic disorder and its use in functional proteomics. Methods Mol Biol 2007; 408:69-92; PMID:18314578; http://dx.doi.org/10.1007/978-1-59745-547-3_5
  • He B, Wang K, Liu Y, Xue B, Uversky VN, Dunker AK. Predicting intrinsic disorder in proteins: an overview. Cell Res 2009; 19:929-949; PMID:19597536; http://dx.doi.org/10.1038/cr.2009.87
  • Peng ZL, Kurgan L. Comprehensive comparative assessment of in-silico predictors of disordered regions. Curr Protein Pept Sci 2012; 13:6-18; PMID:22044149; http://dx.doi.org/10.2174/138920312799277938
  • Walsh I, Giollo M, Di Domenico T, Ferrari C, Zimmermann O, Tosatto SC. Comprehensive large-scale assessment of intrinsic protein disorder. Bioinformatics 2015; 31:201-8; PMID:25246432; http://dx.doi.org/10.1093/bioinformatics/btu625
  • Ishida T, Kinoshita K. Prediction of disordered regions in proteins based on the meta approach. Bioinformatics 2008; 24:1344-8; PMID:18426805; http://dx.doi.org/10.1093/bioinformatics/btn195
  • Lieutaud P, Canard B, Longhi S. MeDor: a metaserver for predicting protein disorder. BMC Genomics 2008; 9:S25; PMID:18831791; http://dx.doi.org/10.1186/1471-2164-9-S2-S25
  • Fan X, Kurgan L. Accurate prediction of disorder in protein chains with a comprehensive and empirically designed consensus. J Biomol Struct Dyn 2014; 32:448-64; PMID:23534882; http://dx.doi.org/10.1080/07391102.2013.775969
  • Peng Z, Kurgan L. On the complementarity of the consensus-based disorder prediction. Pac Symp Biocomput 2012:176-87; PMID:22174273
  • Garner E, Romero P, Dunker AK, Brown C, Obradovic Z. Predicting binding regions within disordered proteins. Genome Informatics 1999; 10:41-50; PMID:11072341
  • Oldfield CJ, Cheng Y, Cortese MS, Romero P, Uversky VN, Dunker AK. Coupled Folding and Binding with alpha-Helix-Forming Molecular Recognition Elements. Biochemistry 2005; 44:12454-70; PMID:16156658; http://dx.doi.org/10.1021/bi050736e
  • Mohan A, Oldfield CJ, Radivojac P, Vacic V, Cortese MS, Dunker AK, Uversky VN. Analysis of molecular recognition features (MoRFs). J Mol Biol 2006; 362:1043-59; PMID:16935303; http://dx.doi.org/10.1016/j.jmb.2006.07.087
  • Cheng Y, Oldfield CJ, Meng J, Romero P, Uversky VN, Dunker AK. Mining alpha-helix-forming molecular recognition features with cross species sequence alignments. Biochemistry 2007; 46:13468-77; PMID:17973494; http://dx.doi.org/10.1021/bi7012273
  • Disfani FM, Hsu WL, Mizianty MJ, Oldfield CJ, Xue B, Dunker AK, Uversky VN, Kurgan L. MoRFpred, a computational tool for sequence-based prediction and characterization of short disorder-to-order transitioning binding regions in proteins. Bioinformatics 2012; 28:i75-83; PMID:22689782; http://dx.doi.org/10.1093/bioinformatics/bts209
  • Yan J, Dunker AK, Uversky VN, Kurgan L. Molecular Recognition Features (MoRFs) in three domains of life. Mol Biosyst 2015; 12:697-710; PMID:26651072; http://dx.doi.org/10.1039/c5mb00640f
  • Malhis N, Gsponer J. Computational identification of MoRFs in protein sequences. Bioinformatics 2015; 31:1738-44; PMID:25637562; http://dx.doi.org/10.1093/bioinformatics/btv060
  • Puntervoll P, Linding R, Gemund C, Chabanis-Davidson S, Mattingsdal M, Cameron S, Martin DM, Ausiello G, Brannetti B, Costantini A, et al. ELM server: A new resource for investigating short functional sites in modular eukaryotic proteins. Nucleic Acids Res 2003; 31:3625-30; PMID:12824381; http://dx.doi.org/10.1093/nar/gkg545
  • Dosztanyi Z, Meszaros B, Simon I. ANCHOR: web server for predicting protein binding regions in disordered proteins. Bioinformatics 2009; 25:2745-6; PMID:19717576; http://dx.doi.org/10.1093/bioinformatics/btp518
  • Dosztanyi Z, Csizmok V, Tompa P, Simon I. The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J Mol Biol 2005; 347:827-39; PMID:15769473; http://dx.doi.org/10.1016/j.jmb.2005.01.071
  • Peng Z, Wang C, Uversky VN, Kurgan L. Prediction of disordered RNA, DNA, and protein binding regions using DisoRDPbind. In: Kloczkowski A, Zhou Y, Faraggi E, Yang Y, eds. Prediction of Protein Secondary Structure and Other One-dimensional Structural Properties. Springer, 2016.
  • Peng Z, Wang C, Uversky AV, Kurgan L. Prediction of disordered RNA, DNA, and protein binding regions using DisoRDPbind. Methods Mol Biol 2015: accepted.
  • Meng F, Kurgan L. DFLpred: High-throughput prediction of disordered flexible linker regions in protein sequences. Bioinformatics 2016; 32:i341-i50; PMID:27307636; http://dx.doi.org/10.1093/bioinformatics/btw280
  • Iakoucheva LM, Radivojac P, Brown CJ, O'Connor TR, Sikes JG, Obradovic Z, Dunker AK. The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 2004; 32:1037-49; PMID:14960716; http://dx.doi.org/10.1093/nar/gkh253
  • Pejaver V, Hsu WL, Xin F, Dunker AK, Uversky VN, Radivojac P. The structural and functional signatures of proteins that undergo multiple events of post-translational modification. Protein Sci 2014; 23:1077-93; PMID:24888500; http://dx.doi.org/10.1002/pro.2494
  • Brown CJ, Johnson AK, Dunker AK, Daughdrill GW. Evolution and disorder. Curr Opin Struct Biol 2011; 21:441-6; PMID:21482101; http://dx.doi.org/10.1016/j.sbi.2011.02.005
  • Sickmeier M, Hamilton JA, LeGall T, Vacic V, Cortese MS, Tantos A, Szabo B, Tompa P, Chen J, Uversky VN, et al. DisProt: the Database of Disordered Proteins. Nucleic Acids Res 2007; 35:D786-93; PMID:17145717; http://dx.doi.org/10.1093/nar/gkl893
  • Oates ME, Romero P, Ishida T, Ghalwash M, Mizianty MJ, Xue B, Dosztanyi Z, Uversky VN, Obradovic Z, Kurgan L, et al. D(2)P(2): database of disordered protein predictions. Nucleic Acids Res 2013; 41:D508-16; PMID:23203878; http://dx.doi.org/10.1093/nar/gks1226
  • Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, Dunker AK. Sequence complexity of disordered protein. Proteins 2001; 42:38-48; PMID:11093259; http://dx.doi.org/10.1002/1097-0134(20010101)42:1%3c38::AID-PROT50%3e3.0.CO;2-3
  • Dosztanyi Z, Csizmok V, Tompa P, Simon I. IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 2005; 21:3433-4; PMID:15955779; http://dx.doi.org/10.1093/bioinformatics/bti541
  • Ishida T, Kinoshita K. PrDOS: prediction of disordered protein regions from amino acid sequence. Nucleic Acids Res 2007; 35:W460-4; PMID:17567614; http://dx.doi.org/10.1093/nar/gkm363
  • Obradovic Z, Peng K, Vucetic S, Radivojac P, Dunker AK. Exploiting heterogeneous sequence properties improves prediction of protein disorder. Proteins 2005; 61 Suppl 7:176-82; PMID:16187360; http://dx.doi.org/10.1002/prot.20735
  • Peng K, Radivojac P, Vucetic S, Dunker AK, Obradovic Z. Length-dependent prediction of protein intrinsic disorder. Bmc Bioinformatics 2006; 7:208; PMID:16618368; http://dx.doi.org/10.1186/1471-2105-7-208
  • Walsh I, Martin AJ, Di Domenico T, Tosatto SC. ESpritz: accurate and fast prediction of protein disorder. Bioinformatics 2012; 28:503-9; PMID:22190692; http://dx.doi.org/10.1093/bioinformatics/btr682
  • Fukuchi S, Amemiya T, Sakamoto S, Nobe Y, Hosoda K, Kado Y, Murakami SD, Koike R, Hiroaki H, Ota M. IDEAL in 2014 illustrates interaction networks composed of intrinsically disordered proteins and their binding partners. Nucleic Acids Res 2014; 42:D320-5; PMID:24178034; http://dx.doi.org/10.1093/nar/gkt1010
  • Potenza E, Di Domenico T, Walsh I, Tosatto SC. MobiDB 2.0: an improved database of intrinsically disordered and mobile proteins. Nucleic Acids Res 2015; 43:D315-20; PMID:25361972; http://dx.doi.org/10.1093/nar/gku982
  • Linding R, Jensen LJ, Diella F, Bork P, Gibson TJ, Russell RB. Protein disorder prediction: implications for structural proteomics. Structure 2003; 11:1453-9; PMID:14604535; http://dx.doi.org/10.1016/j.str.2003.10.002
  • Linding R, Russell RB, Neduva V, Gibson TJ. GlobPlot: exploring protein sequences for globularity and disorder. Nucleic Acids Res 2003; 31:3701-8; PMID:12824398; http://dx.doi.org/10.1093/nar/gkg519
  • Yang ZR, Thomson R, McNeil P, Esnouf RM. RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics 2005; 21:3369-76; PMID:15947016; http://dx.doi.org/10.1093/bioinformatics/bti534
  • Varadi M, Kosol S, Lebrun P, Valentini E, Blackledge M, Dunker AK, Felli IC, Forman-Kay JD, Kriwacki RW, Pierattelli R, et al. pE-DB: a database of structural ensembles of intrinsically disordered and of unfolded proteins. Nucleic Acids Res 2014; 42:D326-35; PMID:24174539; http://dx.doi.org/10.1093/nar/gkt960
  • Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW, et al. Intrinsically disordered protein. J Mol Graph Model 2001; 19:26-59; PMID:11381529; http://dx.doi.org/10.1016/S1093-3263(00)00138-8
  • Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, Dunker AK. Sequence complexity of disordered proteins. Proteins 2001; 42:38-48; PMID:11093259; http://dx.doi.org/10.1002/1097-0134(20010101)42:1%3c38::AID-PROT50%3e3.0.CO;2-3
  • Vucetic S, Brown CJ, Dunker AK, Obradovic Z. Flavors of protein disorder. Proteins 2003; 52:573-84; PMID:12910457; http://dx.doi.org/10.1002/prot.10437
  • Vacic V, Uversky VN, Dunker AK, Lonardi S. Composition Profiler: a tool for discovery and visualization of amino acid composition differences. BMC Bioinformatics 2007; 8:211; PMID:17578581; http://dx.doi.org/10.1186/1471-2105-8-211
  • Vucetic S, Obradovic Z, Vacic V, Radivojac P, Peng K, Iakoucheva LM, Cortese MS, Lawson JD, Brown CJ, Sikes JG, et al. DisProt: a database of protein disorder. Bioinformatics 2005; 21:137-40; PMID:15310560; http://dx.doi.org/10.1093/bioinformatics/bth476
  • Vucetic S, Brown C, Dunker K, Obradovic Z. Flavors of protein disorder. Proteins 2003; 52:573-84; PMID:12910457; http://dx.doi.org/10.1002/prot.10437
  • Karlin D, Ferron F, Canard B, Longhi S. Structural disorder and modular organization in Paramyxovirinae N and P. J Gen Virol 2003; 84:3239-52; PMID:14645906; http://dx.doi.org/10.1099/vir.0.19451-0
  • Severson W, Xu X, Kuhn M, Senutovitch N, Thokala M, Ferron F, Longhi S, Canard B, Jonsson CB. Essential amino acids of the hantaan virus N protein in its interaction with RNA. J Virol 2005; 79:10032-9; PMID:16014963; http://dx.doi.org/10.1128/JVI.79.15.10032-10039.2005
  • Llorente MT, Barreno-Garcia B, Calero M, Camafeita E, Lopez JA, Longhi S, Ferron F, Varela PF, Melero JA. Structural analysis of the human respiratory syncitial virus phosphoprotein: characterization of an a-helical domain involved in oligomerization. J Gen Virol 2006; 87:159-69; PMID:16361428; http://dx.doi.org/10.1099/vir.0.81430-0
  • Habchi J, Mamelli L, Darbon H, Longhi S. Structural Disorder within Henipavirus Nucleoprotein and Phosphoprotein: From Predictions to Experimental Assessment. PLoS One 2010; 5:e11684; PMID:20657787; http://dx.doi.org/10.1371/journal.pone.0011684
  • Longhi S, Lieutaud P, Canard B. Conformational disorder. Methods Mol Biol 2010; 609:307-25; http://dx.doi.org/10.1007/978-1-60327-241-4_18
  • Pollastri G, McLysaght A. Porter: a new, accurate server for protein secondary structure prediction. Bioinformatics 2005; 21:1719-20; PMID:15585524; http://dx.doi.org/10.1093/bioinformatics/bti203
  • Fukuchi S, Hosoda K, Homma K, Gojobori T, Nishikawa K. Binary classification of protein molecules into intrinsically disordered and ordered segments. BMC structural biology 2011; 11:29; PMID:21693062; http://dx.doi.org/10.1186/1472-6807-11-29
  • Linding R, Jensen LJ, Diella F, Bork P, Gibson TJ, Russell RB. Protein disorder prediction: implications for structural proteomics. Structure (Camb) 2003; 11:1453-9; http://dx.doi.org/10.1016/j.str.2003.10.002
  • Ward JJ, McGuffin LJ, Bryson K, Buxton BF, Jones DT. The DISOPRED server for the prediction of protein disorder. Bioinformatics 2004; 20:2138-9; PMID:15044227; http://dx.doi.org/10.1093/bioinformatics/bth195
  • Cheng J, Sweredoski M, Baldi P. Accurate prediction of protein disordered regions by mining protein structure data, data mining and knowledge discovery. 2005; 11:213-22.
  • Obradovic Z, Peng K, Vucetic S, Radivojac P, Brown CJ, Dunker AK. Predicting intrinsic disorder from amino acid sequence. Proteins 2003; 53 Suppl 6:566-72; PMID:14579347; http://dx.doi.org/10.1002/prot.10532
  • Peng K, Vucetic S, Radivojac P, Brown CJ, Dunker AK, Obradovic Z. Optimizing long intrinsic disorder predictors with protein evolutionary information. J Bioinform Comput Biol 2005; 3:35-60; PMID:15751111; http://dx.doi.org/10.1142/S0219720005000886
  • Eickholt J, Cheng J. DNdisorder: predicting protein disorder using boosting and deep networks. BMC Bioinformatics 2013; 14:88; PMID:23497251; http://dx.doi.org/10.1186/1471-2105-14-88
  • Linding R, Russell RB, Neduva V, Gibson TJ. GlobPlot: Exploring protein sequences for globularity and disorder. Nucleic Acids Res 2003; 31:3701-8; PMID:12824398; http://dx.doi.org/10.1093/nar/gkg519
  • Wang L, Sauer UH. OnD-CRF: predicting order and disorder in proteins using [corrected] conditional random fields. Bioinformatics 2008; 24:1401-2; PMID:18430742; http://dx.doi.org/10.1093/bioinformatics/btn132
  • Hirose S, Shimizu K, Noguchi T. POODLE-I: Disordered Region Prediction by Integrating POODLE Series and Structural Information Predictors Based on a Workflow Approach. In Silico Biol 2010; 10:185-91; PMID:22430291
  • Obradovic Z, Peng K, Vucetic S, Radivojac P, Dunker AK. Exploiting heterogeneous sequence properties improves prediction of protein disorder. Proteins 2005; 61:176-82; PMID:16187360; http://dx.doi.org/10.1002/prot.20735
  • Bordoli L, Kiefer F, Schwede T. Assessment of disorder predictions in CASP7. Proteins 2007; 69 Suppl 8:129-36; PMID:17680688; http://dx.doi.org/10.1002/prot.21671
  • Deng X, Eickholt J, Cheng J. PreDisorder: ab initio sequence-based prediction of protein disordered regions. BMC Bioinformatics 2009; 10:436; PMID:20025768; http://dx.doi.org/10.1186/1471-2105-10-436
  • Noivirt-Brik O, Prilusky J, Sussman JL. Assessment of disorder predictions in CASP8. Proteins 2009; 77 Suppl 9:210-6; PMID:19774619; http://dx.doi.org/10.1002/prot.22586
  • Zhang T, Faraggi E, Xue B, Dunker AK, Uversky VN, Zhou Y. SPINE-D: accurate prediction of short and long disordered regions by a single neural-network based method. J Biomol Struct Dyn 2012; 29:799-813; PMID:22208280; http://dx.doi.org/10.1080/073911012010525022
  • Galzitskaya OV, Garbuzynskiy SO, Lobanov MY. FoldUnfold: web server for the prediction of disordered regions in protein chain. Bioinformatics 2006; 22:2948-9; PMID:17021161; http://dx.doi.org/10.1093/bioinformatics/btl504
  • Zeev-Ben-Mordehai T, Rydberg EH, Solomon A, Toker L, Auld VJ, Silman I, Botti S, Sussman JL. The intracellular domain of the Drosophila cholinesterase-like neural adhesion protein, gliotactin, is natively unfolded. Proteins 2003; 53:758-67; PMID:14579366; http://dx.doi.org/10.1002/prot.10471
  • Oldfield CJ, Cheng Y, Cortese MS, Brown CJ, Uversky VN, Dunker AK. Comparing and combining predictors of mostly disordered proteins. Biochemistry 2005; 44:1989-2000; PMID:15697224; http://dx.doi.org/10.1021/bi047993o
  • Xue B, Oldfield CJ, Dunker AK, Uversky VN. CDF it all: consensus prediction of intrinsically disordered proteins based on various cumulative distribution functions. FEBS letters 2009; 583:1469-74; PMID:19351533; http://dx.doi.org/10.1016/j.febslet.2009.03.070
  • Mohan A, Sullivan WJ, Jr., Radivojac P, Dunker AK, Uversky VN. Intrinsic disorder in pathogenic and non-pathogenic microbes: discovering and analyzing the unfoldomes of early-branching eukaryotes. Mol Biosyst 2008; 4:328-40; PMID:18354786; http://dx.doi.org/10.1039/b719168e
  • Callebaut I, Labesse G, Durand P, Poupon A, Canard L, Chomilier J, Henrissat B, Mornon JP. Deciphering protein sequence information through hydrophobic cluster analysis (HCA): current status and perspectives. Cell Mol Life Sci 1997; 53:621-45; PMID:9351466; http://dx.doi.org/10.1007/s000180050082
  • Peng Z, Mizianty MJ, Kurgan L. Genome-scale prediction of proteins with long intrinsically disordered regions. Proteins 2014; 82:145-58; PMID:23798504; http://dx.doi.org/10.1002/prot.24348
  • Yan J, Mizianty MJ, Filipow PL, Uversky VN, Kurgan L. RAPID: fast and accurate sequence-based prediction of intrinsic disorder content on proteomic scale. Biochim Biophys Acta 2013; 1834:1671-80; PMID:23732563; http://dx.doi.org/10.1016/j.bbapap.2013.05.022
  • Kozlowski LP, Bujnicki JM. MetaDisorder: a meta-server for the prediction of intrinsic disorder in proteins. BMC Bioinformatics 2012; 13:111; PMID:22624656; http://dx.doi.org/10.1186/1471-2105-13-111
  • Chandonia JM. StrBioLib: a Java library for development of custom computational structural biology applications. Bioinformatics 2007; 23:2018-20; PMID:17537750; http://dx.doi.org/10.1093/bioinformatics/btm269
  • Mizianty MJ, Stach W, Chen K, Kedarisetti KD, Disfani FM, Kurgan L. Improved sequence-based prediction of disordered regions with multilayer fusion of multiple information sources. Bioinformatics 2010; 26:i489-96; PMID:20823312; http://dx.doi.org/10.1093/bioinformatics/btq373
  • Mizianty MJ, Zhang T, Xue B, Zhou Y, Dunker AK, Uversky VN, Kurgan L. In-silico prediction of disorder content using hybrid sequence representation. BMC Bioinformatics 2011; 12:245; PMID:21682902; http://dx.doi.org/10.1186/1471-2105-12-245
  • Mizianty MJ, Uversky V, Kurgan L. Prediction of intrinsic disorder in proteins using MFDp2. Methods Mol Biol 2014; 1137:147-62; PMID:24573480; http://dx.doi.org/10.1007/978-1-4939-0366-5_11
  • Xue B, Dunbrack RL, Williams RW, Dunker AK, Uversky VN. PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim Biophys Acta 2010; 1804:996-1010; PMID:20100603; http://dx.doi.org/10.1016/j.bbapap.2010.01.011
  • Schlessinger A, Punta M, Yachdav G, Kajan L, Rost B. Improved disorder prediction by combination of orthogonal approaches. PLoS One 2009; 4:e4433; PMID:19209228; http://dx.doi.org/10.1371/journal.pone.0004433
  • Schlessinger A, Yachdav G, Rost B. PROFbval: predict flexible and rigid residues in proteins. Bioinformatics 2006; 22:891-3; PMID:16455751; http://dx.doi.org/10.1093/bioinformatics/btl032
  • Schlessinger A, Liu J, Rost B. Natively unstructured loops differ from other loops. PLoS Comput Biol 2007; 3:e140; PMID:17658943; http://dx.doi.org/10.1371/journal.pcbi.0030140
  • Schlessinger A, Punta M, Rost B. Natively unstructured regions in proteins identified from contact predictions. Bioinformatics 2007; 23:2376-84; PMID:17709338; http://dx.doi.org/10.1093/bioinformatics/btm349
  • Blocquel D, Habchi J, Gruet A, Blangy S, Longhi S. Compaction and binding properties of the intrinsically disordered C-terminal domain of Henipavirus nucleoprotein as unveiled by deletion studies. Mol Biosyst 2012; 8:392-410; PMID:22108848; http://dx.doi.org/10.1039/C1MB05401E
  • Uversky VN. Natively unfolded proteins: a point where biology waits for physics. Protein Sci 2002; 11:739-56; PMID:11910019; http://dx.doi.org/10.1110/ps.4210102
  • Vacic V, Oldfield CJ, Mohan A, Radivojac P, Cortese MS, Uversky VN, Dunker AK. Characterization of molecular recognition features, MoRFs, and their binding partners. J Proteome Res 2007; 6:2351-66; PMID:17488107; http://dx.doi.org/10.1021/pr0701411
  • Meszaros B, Simon I, Dosztanyi Z. Prediction of protein binding regions in disordered proteins. PLoS Comput Biol 2009; 5:e1000376; PMID:19412530; http://dx.doi.org/10.1371/journal.pcbi.1000376
  • Bourhis J, Johansson K, Receveur-Bréchot V, Oldfield CJ, Dunker AK, Canard B, Longhi S. The C-terminal domain of measles virus nucleoprotein belongs to the class of intrinsically disordered proteins that fold upon binding to their physiological partner. Virus Res 2004; 99:157-67; PMID:14749181; http://dx.doi.org/10.1016/j.virusres.2003.11.007
  • John SP, Wang T, Steffen S, Longhi S, Schmaljohn CS, Jonsson CB. Ebola virus VP30 is an RNA binding protein. J Virol 2007; 81:8967-76; PMID:17567691; http://dx.doi.org/10.1128/JVI.02523-06
  • Meszaros B, Tompa P, Simon I, Dosztanyi Z. Molecular principles of the interactions of disordered proteins. J Mol Biol 2007; 372:549-61; PMID:17681540; http://dx.doi.org/10.1016/j.jmb.2007.07.004
  • Habchi J, Blangy S, Mamelli L, Ringkjobing Jensen M, Blackledge M, Darbon H, Oglesbee M, Shu Y, Longhi S. Characterization of the interactions between the nucleoprotein and the phosphoprotein of Henipaviruses. J Biol Chem 2011; 286:13583-602; PMID:21317293; http://dx.doi.org/10.1074/jbc.M111.219857
  • Daily KM, Radivojac P, Dunker AK. Intrinsic disorder and protein modifications: building an SVM predictor for methylation. IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, CIBCB 2005. San Diego, California, U.S.A., 2005:475-81.
  • McGuffin LJ, Bryson K, Jones DT. The PSIPRED protein structure prediction server. Bioinformatics 2000; 16:404-5; PMID:10869041; http://dx.doi.org/10.1093/bioinformatics/16.4.404
  • Wootton JC. Non-globular domains in protein sequences: automated segmentation using complexity measures. Comput Chem 1994; 18:269-85; PMID:7952898; http://dx.doi.org/10.1016/0097-8485(94)85023-2
  • Kall L, Krogh A, Sonnhammer EL. Advantages of combined transmembrane topology and signal peptide prediction–the Phobius web server. Nucleic Acids Res 2007; 35:W429-32; PMID:17483518; http://dx.doi.org/10.1093/nar/gkm256
  • Bornberg-Bauer E, Rivals E, Vingron M. Computational approaches to identify leucine zippers. Nucleic Acids Res 1998; 26:2740-6; PMID:9592163; http://dx.doi.org/10.1093/nar/26.11.2740
  • Lupas A, Van Dyke M, Stock J. Predicting coiled coils from protein sequences. Science 1991; 252:1162-4; PMID:2031185; http://dx.doi.org/10.1126/science.252.5009.1162
  • Baldi P, Cheng J, Vullo A. Large-scale prediction of disulphide bond connectivity. Adv Neural Inf Process Syst 2004; 17:97-104.
  • Eudes R, Le Tuan K, Delettre J, Mornon JP, Callebaut I. A generalized analysis of hydrophobic and loop clusters within globular protein sequences. BMC Struct Biology 2007; 7:2; PMID:17210072; http://dx.doi.org/10.1186/1472-6807-7-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.