1,142
Views
1
CrossRef citations to date
0
Altmetric
Research Papers

On the potential of using peculiarities of the protein intrinsic disorder distribution in mitochondrial cytochrome b to identify the source of animal meats

, &
Article: e1264350 | Received 24 Oct 2016, Accepted 19 Nov 2016, Published online: 07 Mar 2017

References

  • Vlachos A, Arvanitoyannis IS, Tserkezou P. An Updated Review of Meat authenticity methods and applications. Crit Rev Food Sci Nutr 2013; 56(7):1061-96
  • Remington BC, Baumert JL, Blom WM, Houben GF, Taylor SL, Kruizinga AG. Unintended allergens in precautionary labelled and unlabelled products pose significant risks to UK allergic consumers. Allergy 2015; 70:813-9; PMID:25846479; http://dx.doi.org/10.1111/all.12625
  • Spink J, Moyer DC. Defining the public health threat of food fraud. J Food Sci 2011; 76:R157-63; PMID:22416717; http://dx.doi.org/10.1111/j.1750-3841.2011.02417.x
  • Aida AA, Che Man YB, Wong CM, Raha AR, Son R. Analysis of raw meats and fats of pigs using polymerase chain reaction for Halal authentication. Meat Sci 2005; 69:47-52; PMID:22062638; http://dx.doi.org/10.1016/j.meatsci.2004.06.020
  • Kane DE, Hellberg RS. Identification of species in ground meat products sold on the U.S. commercial market using DNA-based methods. Food Control 2016; 59:158-63; http://dx.doi.org/10.1016/j.foodcont.2015.05.020
  • Ayaz Y, Ayaz ND, Erol I. Detection of species in meat and meat products using enzyme-linked immunosorbent assay. J Muscle Foods 2006; 17 214-20; http://dx.doi.org/10.1111/j.1745-4573.2006.00046.x
  • Cawthorn D-M, Steinman HA, Hoffman LC. A high incidence of species substitution and mislabelling detected in meat products sold in South Africa. Food Control 2013; 32 440-9; http://dx.doi.org/10.1016/j.foodcont.2013.01.008
  • D'Amato ME, Alechine E, Cloete KW, Davison S, Corach D. Where is the game? Wild meat products authentication in South Africa: a case study. Investig Genet 2013; 4:6; PMID:23452350; http://dx.doi.org/10.1186/2041-2223-4-6
  • Flores-Munguia ME, Bermudez-Almada MC, Vazquez-Moreno L. A research note: detection of adulteration in processed traditional meat products. J Muscle Foods 2000; 11 319-25; http://dx.doi.org/10.1111/j.1745-4573.2000.tb00435.x
  • Hsieh Y-HP, Woodward BB. Ho S-H. Detection of species substitution in raw and cooked meats using immunoassays. J Food Prot 1995; 58:555-9; http://dx.doi.org/10.4315/0362-028X-58.5.555
  • Ballin NZ, Vogensen FK, Karlsson AH. Species determination - Can we detect and quantify meat adulteration? Meat Sci 2009; 83:165-74; PMID:20416768; http://dx.doi.org/10.1016/j.meatsci.2009.06.003
  • Druml B, Grandits S, Mayer W, Hochegger R, Cichna-Markl M. Authenticity control of game meat products–a single method to detect and quantify adulteration of fallow deer (Dama dama), red deer (Cervus elaphus) and sika deer (Cervus nippon) by real-time PCR. Food Chem 2015; 170:508-17; PMID:25306377; http://dx.doi.org/10.1016/j.foodchem.2014.08.048
  • Amaral JS, Santos CG, Melo VS, Oliveira MBPP, Mafra I. Authentication of a traditional game meat sausage (Alheira) by species-specific PCR assays to detect hare, rabbit, red deer, pork and cow meats. Food Res Int 2014; 60 140-5; http://dx.doi.org/10.1016/j.foodres.2013.11.003
  • Pascal G, Mahe S. Identity, traceability, acceptability and substantial equivalence of food. Cell Mol Biol (Noisy-le-grand) 2001; 47:1329-42; PMID:11838953.
  • Ferri E, Galimberti A, Casiraghi M, Airoldi C, Ciaramelli C, Palmioli A, Mezzasalma V, Bruni I, Labra M. Towards a universal approach based on Omics technologies for the quality control of food. BioMed Res Int 2015; 2015:365794.
  • McVeigh HP, Bartlett SE, Davidson WS. Polymerase chain reaction/direct sequence analysis of the cytochrome b gene in Salmo salar. Aquaculture 1991; 95 225-33; http://dx.doi.org/10.1016/0044-8486(91)90089-P
  • Meyer R, Hofelein C, Luthy J, Candrian U. Polymerase chain reaction-restriction fragment length polymorphism analysis: a simple method for species identification in food. J AOAC Int 1995; 78:1542-51; PMID:8664595.
  • Koh MC, Lim CH, Chua SB, Chew ST, Phang ST. Random amplified polymorphic DNA (RAPD) fingerprints for identification of red meat animal species. Meat Sci 1998; 48:275-85; PMID:22063076; http://dx.doi.org/10.1016/S0309-1740(97)00104-6
  • Sanjuan A, Comesana AS. Molecular identification of nine commercial flatfish species by polymerase chain reaction–restriction fragment length polymorphism analysis of a segment of the cytochrome b region. J Food Prot 2002; 65 1016-23; PMID:12092715; http://dx.doi.org/10.4315/0362-028X-65.6.1016
  • Abdulmawjood A, Buelte M. Identification of Ostrich meat by restriction fragment length polymorphism (RFLP) analysis of cytochrome b gene. J Food Sci 2002; 5:1688-91; http://dx.doi.org/10.1111/j.1365-2621.2002.tb08706.x
  • Yan P, Wu XB, Shi Y, Gu C-M, Wang R-P, Wang CL. Identification of Chinese alligators (Alligator sinensis) meat by diagnostic PCR of the mitochondrial cytochrome b gene. Biol Cons 2005; 121 45-51; http://dx.doi.org/10.1016/j.biocon.2004.04.008
  • Rodriguez MA, Garcia T, Gonzalez I, Asensio L, Hernandez PE, Martin R. PCR identification of beef, sheep, goat, and pork in raw and heat-treated meat mixtures. J Food Prot 2004; 67:172-7; PMID:14717369; http://dx.doi.org/10.4315/0362-028X-67.1.172
  • Wu H, Wan QH, Fang SG, Zhang SY. Application of mitochondrial DNA sequence analysis in the forensic identification of Chinese sika deer subspecies. Forensic Sci Int 2005; 148:101-5; PMID:15639603; http://dx.doi.org/10.1016/j.forsciint.2004.04.072
  • Cronin MA, Palmisciano DA, Vyse ER, Cameron DG. Mitochondrial DNA in wildlife forensic science: species identification of tissues. Wildlife Soc Bull 1991; 19:94-105.
  • Baker CS, Palumbi SR. Which whales are hunted? A molecular genetic approach to monitoring whaling. Science 1994; 265:1538-9; PMID:17801528; http://dx.doi.org/10.1126/science.265.5178.1538
  • DeSalle R, Birstein VJ. PCR identification of black caviar. Nature 1996; 381:197-8; http://dx.doi.org/10.1038/381197a0
  • Wan QH, Fang SG. Application of species-specific polymerase chain reaction in the forensic identification of tiger species. Forensic Sci Int 2003; 131:75-8; PMID:12505474; http://dx.doi.org/10.1016/S0379-0738(02)00398-5
  • Roman J, Bowen BW. The mock turtle syndrome: genetic identification of turtle meat purchased in the southeastern United States of America. Anim Conserv 2000:61-5; http://dx.doi.org/10.1111/j.1469-1795.2000.tb00087.x
  • Liu Z, Wang Y, Zhou K, Han D, Yang X, Liu X. Authentication of Chinese crude drug, Gecko, by allele-specific diagnostic PCR. Planta Med 2001; 67:385-7; PMID:11458468; http://dx.doi.org/10.1055/s-2001-14321
  • Liu ZQ, Wang YQ, Zhou KY. Authentication of TCM Carapax Trionycis by allele-specific diagnostic polymerase chain reaction. Chin Tradit Herb Drugs 2001; 67:1-3.
  • Tang SY, Fu W, Chen YJ, Wang JY, Jiang X, Zhang YP. Research on the identification of Cornus Cervi Pantotrichum with molecular taxonomy. Chin Pharm J 2002; 4 258-60.
  • Wetton JH, Tsang CS, Roney CA, Spriggs AC. An extremely sensitive species-specific ARMs PCR test for the presence of tiger bone DNA. Forensic Sci Int 2004; 140:139-45; PMID:15017992; http://dx.doi.org/10.1016/j.forsciint.2003.11.018
  • Wetton JH, Tsang CS, Roney CA, Spriggs AC. An extremely sensitive species-specific ARMS PCR test for the presence of tiger bone DNA. Forensic Sci Int 2002; 126:137-44; PMID:12084490; http://dx.doi.org/10.1016/S0379-0738(02)00045-2
  • Shivji M, Clarke S, Pank M, Natanson L, Kohler N, Stanhope M. Genetic identification of Pelagic shark body parts for conservation and trade monitoring. Conserv Biol 2002; 16:1036-47; http://dx.doi.org/10.1046/j.1523-1739.2002.01188.x
  • Chapman DD, Abercrombie DL, Douady CJ, Pikitch EK, Stanhope MJ, Shivji MS. A streamlined, bi-organelle, multiplex PCR approach to species identification: Application to global conservation and trade monitoring of the great white shark, Carcharodon carcharias. Conserv Genet 2003; 4:415-25; http://dx.doi.org/10.1023/A:1024771215616
  • Ross HA, Lento GM, Dalebout ML, Goode M, Ewing G, McLaren P, Rodrigo AG, Lavery S, Baker CS. DNA surveillance: web-based molecular identification of whales, dolphins, and porpoises. J Hered 2003; 94:111-4; PMID:12721222; http://dx.doi.org/10.1093/jhered/esg027
  • Hsieh HM, Huang LH, Tsai LC, Kuo YC, Meng HH, Linacre A, Lee JC. Species identification of rhinoceros horns using the cytochrome b gene. Forensic Sci Int 2003; 136:1-11; PMID:12969614; http://dx.doi.org/10.1016/S0379-0738(03)00251-2
  • Johns GC, Avise JC. A comparative summary of genetic distances in the vertebrates from the mitochondrial cytochrome b gene. Mol Biol Evol 1998; 15:1481-90; PMID:12572611; http://dx.doi.org/10.1093/oxfordjournals.molbev.a025875
  • Yacoub HA, Fathi MM, Mahmoud WM. DNA barcode through cytochrome b gene information of mtDNA in native chicken strains. Mitochondrial DNA 2013; 24:528-37; PMID:23464748; http://dx.doi.org/10.3109/19401736.2013.770489
  • Yacoub HA, Fathi MM. Phylogenetic analysis using d-loop marker of mtDNA of Saudi native chicken strains. Mitochondrial DNA 2013; 24:538-51; PMID:23485352; http://dx.doi.org/10.3109/19401736.2013.770494
  • Yacoub HA, Ramadan HA, Baeshen NA, Sadek MA, Abou Alsoud ME. Molecular characterization of Saudi local chicken strains using mitochondrial DNA markers. Mitochondrial DNA 2015; 26:520-31; PMID:24409881; http://dx.doi.org/10.3109/19401736.2013.863285
  • Verma SK, Singh L. Novel universal primers establish identity of an enormous number of animal species for forensic application. Mol Ecol Notes 2003; 3:28-31; http://dx.doi.org/10.1046/j.1471-8286.2003.00340.x
  • Prieto L, Montesino M, Salas A, Alonso A, Albarran C, Alvarez S, Crespillo M, Di Lonardo AM, Doutremepuich C, Fernandez-Fernandez I, et al. The 2000-2001 GEP-ISFG Collaborative Exercise on mtDNA: assessing the cause of unsuccessful mtDNA PCR amplification of hair shaft samples. Forensic Sci Int 2003; 134:46-53; PMID:12842357; http://dx.doi.org/10.1016/S0379-0738(03)00095-1
  • Prakash S, Patole MS, Ghumatkar SV, Nandode SK, Shinde BM, Shouche YS. Mitochondrial 12S rRNA sequences analysis in wildlife forensics. Curr Sci 2000; 78:1239-41.
  • Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN. Flexible nets. The roles of intrinsic disorder in protein interaction networks. The FEBS journal 2005; 272:5129-48; PMID:16218947; http://dx.doi.org/10.1111/j.1742-4658.2005.04948.x
  • Dunker AK, Lawson JD, Brown CJ, William RM, Romero P, Oh JS. Intrinsically disordered protein. J Mol Graph Model, 2001; 19:26-59; PMID:11381529; http://dx.doi.org/10.1016/S1093-3263(00)00138-8
  • Dunker AK, Obradovic Z. The protein trinity–linking function and disorder. Nat Biotechnol 2001; 19:805-6; PMID:11533628; http://dx.doi.org/10.1038/nbt0901-805
  • Tompa P. Intrinsically unstructured proteins. Trends Biochem Sci 2002; 27:527-33; PMID:12368089; http://dx.doi.org/10.1016/S0968-0004(02)02169-2
  • Uversky VN. Natively unfolded proteins: a point where biology waits for physics. Protein Sci 2002; 11:739-56; PMID:11910019; http://dx.doi.org/10.1110/ps.4210102
  • Uversky VN. The mysterious unfoldome: structureless, underappreciated, yet vital part of any given proteome. J Biomed Biotechnol 2010; 2010:568068; PMID:20011072; http://dx.doi.org/10.1155/2010/568068
  • Uversky VN, Dunker AK. Understanding protein non-folding. Biochim Biophys Acta 2010; 1804:1231-64; PMID:20117254; http://dx.doi.org/10.1016/j.bbapap.2010.01.017
  • Uversky VN, Gillespie JR, Fink AL. Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 2000; 41:415-27; PMID:11025552; http://dx.doi.org/10.1002/1097-0134(20001115)41:3%3c415::AID-PROT130%3e3.0.CO;2-7
  • Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT. Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 2004; 337:635-45; PMID:15019783; http://dx.doi.org/10.1016/j.jmb.2004.02.002
  • Habchi J, Tompa P, Longhi S, Uversky VN. Introducing protein intrinsic disorder. Chem Rev 2014; 114:6561-88; PMID:24739139; http://dx.doi.org/10.1021/cr400514h
  • Dunker AK, Garner E, Guilliot S, Romero P, Albrecht K, Hart J, Obradovic Z, Kissinger C, Villafranca JE. Protein disorder and the evolution of molecular recognition: theory, predictions and observations. Pac Symp Biocomput 1998:473-84; PMID:9697205.
  • Wright PE, Dyson HJ. Intrinsically unstructured proteins: Re-assessing the protein structure-paradigm. J Mol Biol 1999; 293:321-31; PMID:10550212; http://dx.doi.org/10.1006/jmbi.1999.3110
  • Daughdrill GW, Pielak GJ, Uversky VN, Cortese MS, Dunker AK. Natively disordered proteins. In: Buchner J, Kiefhaber T. eds. Handbook of Protein Folding. Weinheim, Germany: Wiley-VCH, Verlag GmbH & Co., 2005:271-353.
  • Uversky VN. Unusual biophysics of intrinsically disordered proteins. Biochim Biophys Acta 2013; 1834:932-51; PMID:23269364; http://dx.doi.org/10.1016/j.bbapap.2012.12.008
  • van der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW, Dunker AK, Fuxreiter M, Gough J, Gsponer J, Jones DT, et al. Classification of intrinsically disordered regions and proteins. Chem Rev 2014; 114:6589-631; PMID:24773235; http://dx.doi.org/10.1021/cr400525m
  • Dunker AK, Brown CJ, Lawson JD, Iakoucheva L, Obradovic Z. Intrinsic disorder and protein function. Biochemistry 2002; 41 6573-82; PMID:12022860; http://dx.doi.org/10.1021/bi012159+
  • Uversky VN. Intrinsic Disorder-based Protein Interactions and their Modulators. Curr Pharm Des 2013; 19:4191-213; PMID:23170892; http://dx.doi.org/10.2174/1381612811319230005
  • Uversky VN, Oldfield CJ, Dunker AK. Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J Mol Recognit 2005; 18:343-84; PMID:16094605; http://dx.doi.org/10.1002/jmr.747
  • Dyson HJ, Wright PE. Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 2005; 6:197-208; PMID:15738986; http://dx.doi.org/10.1038/nrm1589
  • Dunker AK, Brown CJ, Obradovic Z. Identification and functions of usefully disordered Proteins. Adv Protein Chem 2002; 62:25-49; PMID:12418100; http://dx.doi.org/10.1016/S0065-3233(02)62004-2
  • Uversky VN. Multitude of binding modes attainable by intrinsically disordered proteins: a portrait gallery of disorder-based complexes. Chem Soc Rev 2011; 40:1623-34; PMID:21049125; http://dx.doi.org/10.1039/C0CS00057D
  • Oldfield CJ, Meng J, Yang JY, Yang MQ, Uversky VN, Dunker AK. Flexible nets: disorder and induced fit in the associations of p53 and 14-3-3 with their partners. BMC Genomics 2008; 9 Suppl 1:S1; http://dx.doi.org/10.1186/1471-2164-9-S1-S1
  • Hsu WL, Oldfield CJ, Xue B, Meng J, Huang F, Romero P, Uversky VN, Dunker AK. Exploring the binding diversity of intrinsically disordered proteins involved in one-to-many binding. Protein Sci 2013; 22:258-73; PMID:23233352; http://dx.doi.org/10.1002/pro.2207
  • Xue B, Dunker AK, Uversky VN. Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteomes from viruses and the three domains of life. J Biomol Struct Dyn 2012; 30:137-49; PMID:22702725; http://dx.doi.org/10.1080/07391102.2012.675145
  • Peng Z, Yan J, Fan X, Mizianty MJ, Xue B, Wang K, Hu G, Uversky VN, Kurgan L. Exceptionally abundant exceptions: comprehensive characterization of intrinsic disorder in all domains of life. Cell Mol Life Sci 2015; 72:137-51; PMID:24939692; http://dx.doi.org/10.1007/s00018-014-1661-9
  • Dunker AK, Obradovic Z, Romero P, Garner EC, Brown CJ. Intrinsic protein disorder in complete genomes. Genome Inform Ser Workshop Genome Inform 2000; 11:161-71; PMID:11700597.
  • Uversky VN, Oldfield CJ, Dunker AK. Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu Rev Biophys 2008; 37:215-46; PMID:18573080; http://dx.doi.org/10.1146/annurev.biophys.37.032807.125924
  • Vacic V, Markwick PR, Oldfield CJ, Zhao X, Haynes C, Uversky VN, Iakoucheva LM. Disease-associated mutations disrupt functionally important regions of intrinsic protein disorder. PLoS Comput Biol 2012; 8:e1002709; PMID:23055912; http://dx.doi.org/10.1371/journal.pcbi.1002709
  • Uversky VN. Wrecked regulation of intrinsically disordered proteins in diseases: pathogenicity of deregulated regulators. Front Mol Biosci 2014; 1:6; PMID:25988147; http://dx.doi.org/10.3389/fmolb.2014.00006
  • Liu J, Perumal NB, Oldfield CJ, Su EW, Uversky VN, Dunker AK. Intrinsic disorder in transcription factors. Biochemistry 2006; 45:6873-88; PMID:16734424; http://dx.doi.org/10.1021/bi0602718
  • Minezaki Y, Homma K, Kinjo AR, Nishikawa K. Human transcription factors contain a high fraction of intrinsically disordered regions essential for transcriptional regulation. J Mol Biol 2006; 359:1137-49; PMID:16697407; http://dx.doi.org/10.1016/j.jmb.2006.04.016
  • Fukuchi S, Homma K, Minezaki Y, Gojobori T, Nishikawa K. Development of an accurate classification system of proteins into structured and unstructured regions that uncovers novel structural domains: its application to human transcription factors. BMC Struct Biol 2009; 9:26; PMID:19402914; http://dx.doi.org/10.1186/1472-6807-9-26
  • Ito M, Tohsato Y, Sugisawa H, Kohara S, Fukuchi S, Nishikawa I, Nishikawa K. Intrinsically disordered proteins in human mitochondria. Genes Cells 2012; 17:817-25; PMID:22908957; http://dx.doi.org/10.1111/gtc.12000
  • UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res 2015; 43:D204-12; PMID:25348405; http://dx.doi.org/10.1093/nar/gku989
  • Vacic V, Uversky VN, Dunker AK, Lonardi S. Composition Profiler: a tool for discovery and visualization of amino acid composition differences. BMC Bioinformatics 2007; 8:211; PMID:17578581; http://dx.doi.org/10.1186/1471-2105-8-211
  • Peng K, Vucetic S, Radivojac P, Brown CJ, Dunker AK, Obradovic Z. Optimizing long intrinsic disorder predictors with protein evolutionary information. J Bioinform Comput Biol 2005; 3:35-60; PMID:15751111; http://dx.doi.org/10.1142/S0219720005000886
  • Peng ZL, Kurgan L. Comprehensive comparative assessment of in-silico predictors of disordered regions. Curr Protein Pept Sci 2012; 13:6-18; PMID:22044149; http://dx.doi.org/10.2174/138920312799277938
  • Fan X, Kurgan L. Accurate prediction of disorder in protein chains with a comprehensive and empirically designed consensus. J Biomol Struct Dyn 2014; 32:448-64; PMID:23534882; http://dx.doi.org/10.1080/07391102.2013.775969
  • Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, Dunker AK. Sequence complexity of disordered protein. Proteins 2001; 42:38-48; PMID:11093259; http://dx.doi.org/10.1002/1097-0134(20010101)42:1%3c38::AID-PROT50%3e3.0.CO;2-3
  • Prilusky J, Felder CE, Zeev-Ben-Mordehai T, Rydberg EH, Man O, Beckmann JS, Silman I, Sussman JL. FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 2005; 21:3435-8; PMID:15955783; http://dx.doi.org/10.1093/bioinformatics/bti537
  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 2013; 30:2725-9; PMID:24132122; http://dx.doi.org/10.1093/molbev/mst197
  • Calvo JH, Rodellar C, Zaragoza P, Osta R. Beef- and bovine-derived material identification in processed and unprocessed food and feed by PCR amplification. J Agric Food Chem 2002; 50:5262-4; PMID:12207458; http://dx.doi.org/10.1021/jf020051a
  • Mafra I, Ferreira IMPLVO, Oliveira MBPP. Food authentication by PCR-based methods. Eur Food Res Technol 2008; 227; http://dx.doi.org/10.1007/s00217-007-0782-x
  • Bottero MT, Dalmasso A. Animal species identification in food products: evolution of biomolecular methods. Vet J 2011; 190:34-8; PMID:21041103; http://dx.doi.org/10.1016/j.tvjl.2010.09.024
  • Rodriguez-Ramirez R, Gonzalez-Cordova AF, Vallejo-Cordoba B. Review: Authentication and traceability of foods from animal origin by polymerase chain reaction-based capillary electrophoresis. Anal Chim Acta 2011; 685:120-6; PMID:21168559; http://dx.doi.org/10.1016/j.aca.2010.11.021
  • Meyer A, Wilson AC. Origin of tetrapods inferred from their mitochondrial DNA affiliation to lungfish. J Mol Evol 1990; 31:359-64; PMID:2124628; http://dx.doi.org/10.1007/BF02106050
  • Sturmbauer C, Meyer A. Genetic divergence, speciation and morphological stasis in a lineage of African cichlid fishes. Nature 1992; 358:578-81; PMID:1501712; http://dx.doi.org/10.1038/358578a0
  • Cantatore P, Roberti M, Pesole G, Ludovico A, Milella F, Gadaleta MN, Saccone C. Evolutionary analysis of cytochrome b sequences in some Perciformes: evidence for a slower rate of evolution than in mammals. J Mol Evol 1994; 39:589-97; PMID:7807548; http://dx.doi.org/10.1007/BF00160404
  • Rocha-Olivares A, Rosenblatt RH, Vetter RD. Molecular evolution, systematics, and zoogeography of the rockfish subgenus Sebastomus (Sebastes, Scorpaenidae) based on mitochondrial cytochrome b and control region sequences. Mol Phylogenet Evol 1999; 11:441-58; PMID:10196084; http://dx.doi.org/10.1006/mpev.1998.0585
  • Kumazawa Y, Nishida M. Molecular phylogeny of osteoglossoids: a new model for Gondwanian origin and plate tectonic transportation of the Asian arowana. Mol Biol Evol 2000; 17:1869-78; PMID:11110903; http://dx.doi.org/10.1093/oxfordjournals.molbev.a026288
  • Lovejoy NR, De Araujo ML. Molecular systematics, biogeography and population structure of neotropical freshwater needlefishes of the genus Potamorrhaphis. Mol Ecol 2000; 9:259-68; PMID:10736024; http://dx.doi.org/10.1046/j.1365-294x.2000.00845.x
  • Teletchea F, Maudet C, Hanni C. Food and forensic molecular identification: update and challenges. Trends Biotechnol 2005; 23:359-66; PMID:15927295; http://dx.doi.org/10.1016/j.tibtech.2005.05.006
  • Arslan A, Ilhak OI, Calicioglu M. Effect of method of cooking on identification of heat processed beef using polymerase chain reaction (PCR) technique. Meat Sci 2006; 72:326-30; PMID:22061561; http://dx.doi.org/10.1016/j.meatsci.2005.08.001
  • Kesmen Z, Sahin F, Yetim H. PCR assay for the identification of animal species in cooked sausages. Meat Sci 2007; 77:649-53; PMID:22061954; http://dx.doi.org/10.1016/j.meatsci.2007.05.018

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.