2,548
Views
33
CrossRef citations to date
0
Altmetric
Research Papers

How accurate are your simulations? Effects of confined aqueous volume and AMBER FF99SB and CHARMM22/CMAP force field parameters on structural ensembles of intrinsically disordered proteins: Amyloid-β42 in water

ORCID Icon & ORCID Icon
Article: e1377813 | Received 26 Jun 2017, Accepted 06 Sep 2017, Published online: 30 Oct 2017

References

  • Habchi J, Tompa P, Longhi S, Uversky VN. Introducing protein intrinsic disorder. Chem Rev. 2014;114:6561–88. doi:10.1021/cr400514h.
  • van der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW, Dunker AK, et al. Classification of intrinsically disordered regions and proteins. Chem Rev. 2014;114:6589–631. doi:10.1021/cr400525m.
  • Uversky VN, Oldfield CJ, Dunker AK. Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu Rev Biophys. 2008;37:215–46. doi:10.1146/annurev.biophys.37.032807.125924. PMID:18573080.
  • Babu MM, van der Lee R, de Groot NS, Gsponer J. Intrinsically disordered proteins: regulation and disease. Curr Opin Struct Biol. 2011;21:432–40. doi:10.1016/j.sbi.2011.03.011. PMID:21514144.
  • Dyson HJ, Wright PE. Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol. 2005;6:197–208. doi:10.1038/nrm1589. PMID:15738986.
  • Tompa P. Intrinsically disordered proteins: a 10-year recap. Trends Biochem Sci. 2012;37:509–16. doi:10.1016/j.tibs.2012.08.004. PMID:22989858.
  • Uversky VN, Dave V, Iakoucheva LM, Malaney P, Metallo SJ, Pathak RR, Joerger AC. Pathological unfoldomics of uncontrolled chaos: intrinsically disordered proteins and human diseases. Chem Rev. 2014;114:6844–79. doi:10.1021/cr400713r. PMID:24830552.
  • Coskuner O. Divalent copper ion bound amyloid-beta(40) and amyloid-beta(42) alloforms are less preferred than divalent zinc ion bound amyloid-beta(40) and amyloid-beta(42) alloforms. J Biol Inorg Chem. 2016;21:957–73. doi:10.1007/s00775-016-1392-5. PMID:27659954.
  • Coskuner O, Murray IV. Adenosine triphosphate (ATP) reduces amyloid-beta protein misfolding in vitro. J Alzheimers Dis. 2014;41:561–74. PMID:24625803.
  • Wise-Scira O, Xu L, Perry G, Coskuner O. Structures and free energy landscapes of aqueous zinc(II)-bound amyloid-beta(1-40) and zinc(II)-bound amyloid-beta(1-42) with dynamics. J Biol Inorg Chem. 2012;17:927–38. doi:10.1007/s00775-012-0909-9. PMID:22674434.
  • Minton AP. Implications of macromolecular crowding for protein assembly. Curr Opin Struct Biol. 2000;10:34–9. doi:10.1016/S0959-440X(99)00045-7. PMID:10679465.
  • Ellis RJ. Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci. 2001;26:597–604. doi:10.1016/S0968-0004(01)01938-7. PMID:11590012.
  • Hatters DM, Minton AP, Howlett GJ. Macromolecular crowding accelerates amyloid formation by human apolipoprotein C-II. J Biol Chem. 2002;277:7824–30. doi:10.1074/jbc.M110429200. PMID:11751863.
  • Munishkina LA, Cooper EM, Uversky VN, Fink AL. The effect of macromolecular crowding on protein aggregation and amyloid fibril formation. J Mol Recognit. 2004;17:456–64. doi:10.1002/jmr.699. PMID:15362105.
  • Ellis RJ, Minton AP. Protein aggregation in crowded environments. Biol Chem. 2006;387:485–97. doi:10.1515/BC.2006.064. PMID:16740119.
  • Latshaw DC, Cheon M, Hall CK. Effects of macromolecular crowding on amyloid beta (16-22) aggregation using coarse-grained simulations. J Phys Chem B. 2014; 118:13513–26. doi:10.1021/jp508970q. PMID:25347801.
  • Breydo L, Sales AE, Frege T, Howell MC, Zaslavsky BY, Uversky VN. Effects of Polymer Hydrophobicity on Protein Structure and Aggregation Kinetics in Crowded Milieu. Biochemistry. 2015;54:2957–66. doi:10.1021/acs.biochem.5b00116. PMID:25919930.
  • Magno A, Caflisch A, Pellarin R. Crowding Effects on Amyloid Aggregation Kinetics. J Phys Chem Lett. 2010;1:3027–32. doi:10.1021/jz100967z.
  • Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nat Rev Mol Cell Biol. 2007;8:101–12. doi:10.1038/nrm2101. PMID:17245412.
  • Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, et al. Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat Med. 2008;14:837–42. doi:10.1038/nm1782. PMID:18568035.
  • Cleary JP, Walsh DM, Hofmeister JJ, Shankar GM, Kuskowski MA, Selkoe DJ, Ashe KH. Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat Neurosci. 2005;8:79–84. doi:10.1038/nn1372. PMID:15608634.
  • Gnanakaran S, Nussinov R, Garcia AE. Atomic-level description of amyloid beta-dimer formation. J Am Chem Soc. 2006;128:2158–9. doi:10.1021/ja0548337. PMID:16478138.
  • Balducci C, Beeg M, Stravalaci M, Bastone A, Sclip A, Biasini E, Tapella L, Colombo L, Manzoni C, Borsello T, et al. Synthetic amyloid-beta oligomers impair long-term memory independently of cellular prion protein. Proc Natl Acad Sci U S A. 2010;107:2295–300. doi:10.1073/pnas.0911829107. PMID:20133875.
  • Reinke AA, Ung PM, Quintero JJ, Carlson HA, Gestwicki JE. Chemical probes that selectively recognize the earliest Abeta oligomers in complex mixtures. J Am Chem Soc. 2010;132:17655–7. doi:10.1021/ja106291e. PMID:21105683.
  • Sandberg A, Luheshi LM, Sollvander S, Pereira de Barros T, Macao B, Knowles TP, Biverstål H, Lendel C, Ekholm-Petterson F, Dubnovitsky A, et al. Stabilization of neurotoxic Alzheimer amyloid-beta oligomers by protein engineering. Proc Natl Acad Sci U S A. 2010;107:15595–600. doi:10.1073/pnas.1001740107. PMID:20713699.
  • Pras M, Schubert M, Zucker-Franklin D, Rimon A, Franklin EC. The characterization of soluble amyloid prepared in water. J Clin Invest 1968;47:924–33. doi:10.1172/JCI105784. PMID:5641627.
  • Kuo YM, Emmerling MR, Vigo-Pelfrey C, Kasunic TC, Kirkpatrick JB, Murdoch GH, Ball MJ, Roher AE. Water-soluble Abeta (N-40, N-42) oligomers in normal and Alzheimer disease brains. J Biol Chem 1996;271:4077–81. doi:10.1074/jbc.271.8.4077. PMID:8626743.
  • Thirumalai D, Reddy G, Straub JE. Role of water in protein aggregation and amyloid polymorphism. Acc Chem Res. 2012;45:83–92. doi:10.1021/ar2000869. PMID:21761818.
  • Uversky VN, Fink AL. Conformational constraints for amyloid fibrillation: the importance of being unfolded. Biochim Biophys Acta. 2004;1698:131–53. doi:10.1016/j.bbapap.2003.12.008. PMID:15134647.
  • Balbach JJ, Petkova AT, Oyler NA, Antzutkin ON, Gordon DJ, Meredith SC, Tycko R. Supramolecular structure in full-length Alzheimer's beta-amyloid fibrils: evidence for a parallel beta-sheet organization from solid-state nuclear magnetic resonance. Biophys J. 2002;83:1205–16. doi:10.1016/S0006-3495(02)75244-2. PMID:12124300.
  • Cruz L, Urbanc B, Borreguero JM, Lazo ND, Teplow DB, Stanley HE. Solvent and mutation effects on the nucleation of amyloid beta-protein folding. Proc Natl Acad Sci U S A. 2005;102:18258–63. doi:10.1073/pnas.0509276102. PMID:16339896.
  • Wise-Scira O, Xu L, Kitahara T, Perry G, Coskuner O. Amyloid-beta peptide structure in aqueous solution varies with fragment size. J Chem Phys. 2011;135:205101. doi:10.1063/1.3662490. PMID:22128957.
  • Roychaudhuri R, Yang M, Condron MM, Teplow DB. Structural dynamics of the amyloid beta-protein monomer folding nucleus. Biochemistry. 2012;51:3957–9. doi:10.1021/bi300350p. PMID:22551351.
  • Coskuner O, Wise-Scira O. Arginine and disordered amyloid-beta peptide structures: molecular level insights into the toxicity in Alzheimer's disease. ACS Chem Neurosci. 2013;4:1549–58. doi:10.1021/cn4001389. PMID:24041422.
  • Coskuner O, Uversky VN. Tyrosine Regulates beta-Sheet Structure Formation in Amyloid-beta42: A New Clustering Algorithm for Disordered Proteins. J Chem Inf Model. 2017;57:1342–1358. doi:10.1021/acs.jcim.6b00761. PMID:28474890.
  • Estrada LD, Soto C. Disrupting beta-amyloid aggregation for Alzheimer disease treatment. Curr Top Med Chem. 2007;7:115–26. doi:10.2174/156802607779318262. PMID:17266599.
  • Rizzo S, Riviere C, Piazzi L, Bisi A, Gobbi S, Bartolini M, Andrisano V, Morroni F, Tarozzi A, Monti JP, et al. Benzofuran-based hybrid compounds for the inhibition of cholinesterase activity, beta amyloid aggregation, and abeta neurotoxicity. J Med Chem. 2008;51:2883–6. doi:10.1021/jm8002747. PMID:18419109.
  • Re F, Airoldi C, Zona C, Masserini M, La Ferla B, Quattrocchi N, Nicotra F. Beta amyloid aggregation inhibitors: small molecules as candidate drugs for therapy of Alzheimer's disease. Curr Med Chem. 2010;17:2990–3006. doi:10.2174/092986710791959729. PMID:20629631.
  • Bu XL, Rao PP, Wang YJ. Anti-amyloid Aggregation Activity of Natural Compounds: Implications for Alzheimer's Drug Discovery. Mol Neurobiol. 2016;53:3565–75. doi:10.1007/s12035-015-9301-4. PMID:26099310.
  • Simoni E, Caporaso R, Bergamini C, Fiori J, Fato R, Miszta P, Filipek S, Caraci F, Giuffrida ML, Andrisano V, et al. Polyamine Conjugation as a Promising Strategy To Target Amyloid Aggregation in the Framework of Alzheimer's Disease. ACS Med Chem Lett. 2016;7:1145–50. doi:10.1021/acsmedchemlett.6b00339. PMID:27994754.
  • Wei S, Chen W, Qin J, Huangli Y, Wang L, Shen Y, Tang H. Multitarget-directed oxoisoaporphine derivatives: Anti-acetylcholinesterase, anti-beta-amyloid aggregation and enhanced autophagy activity against Alzheimer's disease. Bioorg Med Chem. 2016;24:6031–9. doi:10.1016/j.bmc.2016.09.061. PMID:27720328.
  • Klein AM, Kowall NW, Ferrante RJ. Neurotoxicity and oxidative damage of beta amyloid 1–42 versus beta amyloid 1–40 in the mouse cerebral cortex. Ann N Y Acad Sci 1999;893:314–20. doi:10.1111/j.1749-6632.1999.tb07845.x. PMID:10672257.
  • Heinitz K, Beck M, Schliebs R, Perez-Polo JR. Toxicity mediated by soluble oligomers of beta-amyloid(1-42) on cholinergic SN56.B5.G4 cells. J Neurochem. 2006;98:1930–45. doi:10.1111/j.1471-4159.2006.04015.x. PMID:16945109.
  • Pauwels K, Williams TL, Morris KL, Jonckheere W, Vandersteen A, Kelly G, Schymkowitz J, Rousseau F, Pastore A, Serpell LC, et al. Structural basis for increased toxicity of pathological abeta42:abeta40 ratios in Alzheimer disease. J Biol Chem. 2012;287:5650–60. doi:10.1074/jbc.M111.264473. PMID:22157754.
  • Sengupta U, Nilson AN, Kayed R. The Role of Amyloid-beta Oligomers in Toxicity, Propagation, and Immunotherapy. EBioMedicine. 2016;6:42–9. doi:10.1016/j.ebiom.2016.03.035. PMID:27211547.
  • Krishtal J, Bragina O, Metsla K, Palumaa P, Tougu V. Toxicity of amyloid beta 1–40 and 1–42 on SH-SY5Y cell line. SpringerPlus. 2015;4:19. doi:10.1186/2193-1801-4-S1-P19. PMID:25625039.
  • Morel B, Varela L, Azuaga AI, Conejero-Lara F. Environmental conditions affect the kinetics of nucleation of amyloid fibrils and determine their morphology. Biophys J. 2010;99:3801–10. doi:10.1016/j.bpj.2010.10.039. PMID:21112305.
  • Yoshimura Y, Lin Y, Yagi H, Lee YH, Kitayama H, Sakurai K, So M, Ogi H, Naiki H, Goto Y. Distinguishing crystal-like amyloid fibrils and glass-like amorphous aggregates from their kinetics of formation. Proc Natl Acad Sci U S A. 2012;109:14446–51. doi:10.1073/pnas.1208228109. PMID:22908252.
  • Ojha B, Fukui N, Hongo K, Mizobata T, Kawata Y. Suppression of amyloid fibrils using the GroEL apical domain. Sci Rep. 2016;6:31041. doi:10.1038/srep31041. PMID:27488469.
  • Serpell LC. Alzheimer's amyloid fibrils: structure and assembly. Biochim Biophys Acta. 2000;1502:16–30. doi:10.1016/S0925-4439(00)00029-6. PMID:10899428.
  • Roche J, Shen Y, Lee JH, Ying J, Bax A. Monomeric Abeta(1-40) and Abeta(1-42) Peptides in Solution Adopt Very Similar Ramachandran Map Distributions That Closely Resemble Random Coil. Biochemistry. 2016;55:762–75. doi:10.1021/acs.biochem.5b01259. PMID:26780756.
  • Davies HA, Rigden DJ, Phelan MM, Madine J. Probing Medin Monomer Structure and its Amyloid Nucleation Using 13C-Direct Detection NMR in Combination with Structural Bioinformatics. Sci Rep. 2017;7:45224. doi:10.1038/srep45224. PMID:28327552.
  • Tanzi RE, Bertram L. Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective. Cell. 2005;120:545–55. doi:10.1016/j.cell.2005.02.008. PMID:15734686.
  • Zheng X, Liu D, Roychaudhuri R, Teplow DB, Bowers MT. Amyloid beta-Protein Assembly: Differential Effects of the Protective A2T Mutation and Recessive A2V Familial Alzheimer's Disease Mutation. ACS Chem Neurosci. 2015;6:1732–40. doi:10.1021/acschemneuro.5b00171. PMID:26244608.
  • D'Ursi AM, Armenante MR, Guerrini R, Salvadori S, Sorrentino G, Picone D. Solution structure of amyloid beta-peptide (25-35) in different media. J Med Chem. 2004;47:4231–8. doi:10.1021/jm040773o. PMID:15293994.
  • Malavolta L, Pinto MR, Cuvero JH, Nakaie CR. Interpretation of the dissolution of insoluble peptide sequences based on the acid-base properties of the solvent. Protein Sci. 2006;15:1476–88. doi:10.1110/ps.051956206. PMID:16731981.
  • Urbanc B, Cruz L, Ding F, Sammond D, Khare S, Buldyrev SV, Stanley HE, Dokholyan NV. Molecular dynamics simulation of amyloid beta dimer formation. Biophys J. 2004;87:2310–21. doi:10.1529/biophysj.104.040980. PMID:15454432.
  • Barz B, Urbanc B. Dimer formation enhances structural differences between amyloid beta-protein (1-40) and (1-42): an explicit-solvent molecular dynamics study. PLoS One. 2012;7:e34345. doi:10.1371/journal.pone.0034345. PMID:22509291.
  • Lemkul JA, Bevan DR. Aggregation of Alzheimer's amyloid beta-peptide in biological membranes: a molecular dynamics study. Biochemistry. 2013;52:4971–80. doi:10.1021/bi400562x. PMID:23855340.
  • Nasica-Labouze J, Nguyen PH, Sterpone F, Berthoumieu O, Buchete NV, Cote S, De Simone A, Doig AJ, Faller P, Garcia A, et al. Amyloid beta Protein and Alzheimer's Disease: When Computer Simulations Complement Experimental Studies. Chem Rev. 2015;115:3518–63. doi:10.1021/cr500638n. PMID:25789869.
  • Brown AM, Bevan DR. Molecular Dynamics Simulations of Amyloid beta-Peptide (1-42): Tetramer Formation and Membrane Interactions. Biophys J. 2016;111:937–49. doi:10.1016/j.bpj.2016.08.001. PMID:27602722.
  • Sgourakis NG, Yan Y, McCallum SA, Wang C, Garcia AE. The Alzheimer's peptides Abeta40 and 42 adopt distinct conformations in water: a combined MD / NMR study. J Mol Biol. 2007;368:1448–57. doi:10.1016/j.jmb.2007.02.093. PMID:17397862.
  • Sgourakis NG, Merced-Serrano M, Boutsidis C, Drineas P, Du Z, Wang C, Garcia AE. Atomic-level characterization of the ensemble of the Abeta(1-42) monomer in water using unbiased molecular dynamics simulations and spectral algorithms. J Mol Biol. 2011;405:570–83. doi:10.1016/j.jmb.2010.10.015. PMID:21056574.
  • Ball KA, Phillips AH, Nerenberg PS, Fawzi NL, Wemmer DE, Head-Gordon T. Homogeneous and heterogeneous tertiary structure ensembles of amyloid-beta peptides. Biochemistry. 2011;50:7612–28. doi:10.1021/bi200732x. PMID:21797254.
  • Carballo-Pacheco M, Strodel B. Comparison of force fields for Alzheimer's A beta42: A case study for intrinsically disordered proteins. Protein Sci. 2017;26:174–85. doi:10.1002/pro.3064. PMID:27727496.
  • Coskuner O, Deiters UK. Hydrophobic Interactions by Monte Carlo simulations. Z Phys Chem. 2006;220:349–69. doi:10.1524/zpch.2006.220.3.349.
  • Coskuner O, Deiters UK. Hydrophobic Interactions of Xenon by Monte Carlo simulations. Z Phys Chem. 2007;221:785–99. doi:10.1524/zpch.2007.221.6.785.
  • Lee C, Ham S. Characterizing amyloid-beta protein misfolding from molecular dynamics simulations with explicit water. J Comput Chem. 2011;32:349–55. doi:10.1002/jcc.21628. PMID:20734314.
  • Das P, Kang SG, Temple S, Belfort G. Interaction of amyloid inhibitor proteins with amyloid beta peptides: insight from molecular dynamics simulations. PLoS One. 2014;9:e113041. doi:10.1371/journal.pone.0113041. PMID:25422897.
  • Jose JC, Chatterjee P, Sengupta N. Cross dimerization of amyloid-beta and alphasynuclein proteins in aqueous environment: a molecular dynamics simulations study. PLoS One. 2014;9:e106883. doi:10.1371/journal.pone.0106883. PMID:25210774.
  • Carballo-Pacheco M, Strodel B. Advances in the Simulation of Protein Aggregation at the Atomistic Scale. J Phys Chem B. 2016;120:2991–9. doi:10.1021/acs.jpcb.6b00059. PMID:26965454.
  • Okumura H, Itoh SG. Structural and fluctuational difference between two ends of Abeta amyloid fibril: MD simulations predict only one end has open conformations. Sci Rep. 2016;6:38422. doi:10.1038/srep38422. PMID:27934893.
  • Man VH, Nguyen PH, Derreumaux P. High-Resolution Structures of the Amyloid-beta 1–42 Dimers from the Comparison of Four Atomistic Force Fields. J Phys Chem B. 2017;121:5977–87. doi:10.1021/acs.jpcb.7b04689. PMID:28538095.
  • Tomaselli S, Esposito V, Vangone P, van Nuland NA, Bonvin AM, Guerrini R, Tancredi T, Temussi PA, Picone D. The alpha-to-beta conformational transition of Alzheimer's Abeta-(1-42) peptide in aqueous media is reversible: a step by step conformational analysis suggests the location of beta conformation seeding. Chembiochem. 2006;7:257–67. doi:10.1002/cbic.200500223. PMID:16444756.
  • Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K. Scalable molecular dynamics with NAMD. J Comput Chem. 2005;26:1781–802. doi:10.1002/jcc.20289. PMID:16222654.
  • MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 1998;102:3586–616. doi:10.1021/jp973084f. PMID:24889800.
  • Jorgensen WL, Jenson C. Temperature dependence of TIP3P, SPC, and TIP4P water from NPT Monte Carlo simulations: Seeking temperatures of maximum density. J Comp Chem 1998;19:1179–86. doi:10.1002/(SICI)1096-987X(19980730)19:10%3c1179::AID-JCC6%3e3.0.CO;2-J.
  • Olson MA, Chaudhury S, Lee MS. Comparison between self-guided Langevin dynamics and molecular dynamics simulations for structure refinement of protein loop conformations. J Comput Chem. 2011;32:3014–22. doi:10.1002/jcc.21883. PMID:21793008.
  • Allison TC, Coskuner O, Gonzalez CA. Metallic Systems: A Quantum Chemist's Perspective. Boca Raton (Florida): CRC Press, Taylor & Francis;2011.
  • Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, et al. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res. 2000;33:889–97. doi:10.1021/ar000033j. PMID:11123888.
  • Lee MR, Duan Y, Kollman PA. Use of MM-PB/SA in estimating the free energies of proteins: application to native, intermediates, and unfolded villin headpiece. Proteins. 2000;39:309–16. doi:10.1002/(SICI)1097-0134(20000601)39:4%3c309::AID-PROT40%3e3.0.CO;2-S. PMID:10813813.
  • Case DA. Normal-Mode Analysis of Protein Dynamics. Curr Opin Struc Biol. 1994;4:285–90.
  • Sitkoff D, Sharp KA, Honig B. Accurate Calculation of Hydration Free-Energies Using Macroscopic Solvent Models. J Phys Chem-Us 1994;98:1978–88. doi:10.1021/j100058a043.
  • Zhou R. Replica exchange molecular dynamics method for protein folding simulation. Methods Mol Biol. 2007;350:205–23. PMID:16957325.
  • Sugita Y, Okamoto Y. Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 1999;314:141–51. doi:10.1016/S0009-2614(99)01123-9.
  • Case DA, Darden TA, Cheatham TE, Simmerling CL, Wang J, Duke RE, et al. AMBER 10 University of California, San Francisco, 2008. Retrieved from https://www.researchgate.net/publication/37460688_AMBER_10_University_of_California_San_Francisco
  • Patriksson A, van der Spoel D. A temperature predictor for parallel tempering simulations. Phys Chem Chem Phys. 2008;10:2073–7. doi:10.1039/b716554d. PMID:18688361.
  • Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983;22:2577–637. doi:10.1002/bip.360221211. PMID:6667333.
  • Berhanu WM, Masunov AE. Controlling the aggregation and rate of release in order to improve insulin formulation: molecular dynamics study of full-length insulin amyloid oligomer models. J Mol Model. 2012;18:1129–42. doi:10.1007/s00894-011-1123-3. PMID:21674205.
  • Anand P, Nandel FS, Hansmann UH. The Alzheimer's beta amyloid (Abeta1-39) monomer in an implicit solvent. J Chem Phys. 2008;128:165102. doi:10.1063/1.2907718. PMID:18447506.
  • Baumketner A, Shea JE. The structure of the Alzheimer amyloid beta 10–35 peptide probed through replica-exchange molecular dynamics simulations in explicit solvent. J Mol Biol. 2007;366:275–85. doi:10.1016/j.jmb.2006.11.015. PMID:17166516.
  • Li X, Mehler EL. Simulation of molecular crowding effects on an Alzheimer's beta-amyloid peptide. Cell Biochem Biophys. 2006;46:123–41. doi:10.1385/CBB:46:2:123. PMID:17012754.
  • Wolff M, Zhang-Haagen B, Decker C, Barz B, Schneider M, Biehl R, Radulescu A, Strodel B, Willbold D, Nagel-Steger L. Abeta42 pentamers/hexamers are the smallest detectable oligomers in solution. Sci Rep. 2017;7:2493. doi:10.1038/s41598-017-02370-3. PMID:28559586.
  • Tran TT, Nguyen PH, Derreumaux P. Lattice model for amyloid peptides: OPEP force field parametrization and applications to the nucleus size of Alzheimer's peptides. J Chem Phys. 2016;144:205103. doi:10.1063/1.4951739. PMID:27250331.
  • Barz B, Strodel B. Understanding Amyloid-beta Oligomerization at the Molecular Level: The Role of the Fibril Surface. Chemistry. 2016;22:8768–72. doi:10.1002/chem.201601701. PMID:27135646.
  • Xu L, Nussinov R, Ma B. Allosteric stabilization of the amyloid-beta peptide hairpin by the fluctuating N-terminal. Chem Commun (Camb). 2016;52:1733–6. doi:10.1039/C5CC08107F. PMID:26666686.
  • Xu L, Shan S, Chen Y, Wang X, Nussinov R, Ma B. Coupling of Zinc-Binding and Secondary Structure in Nonfibrillar Abeta40 Peptide Oligomerization. J Chem Inf Model. 2015;55:1218–30. doi:10.1021/acs.jcim.5b00063. PMID:26017140.
  • Fawver JN, Duong KT, Wise-Scira O, Petrofes Chapa R, Schall HE, Coskuner O, Zhu X, Colom LV, Murray IV. Probing and trapping a sensitive conformation: amyloid-beta fibrils, oligomers, and dimers. J Alzheimers Dis. 2012;32:197–215. PMID:22785403.
  • Olubiyi OO, Strodel B. Structures of the amyloid beta-peptides Abeta1-40 and Abeta1-42 as influenced by pH and a D-peptide. J Phys Chem B. 2012;116:3280–91. doi:10.1021/jp2076337. PMID:22300010.
  • Lu Y, Wei G, Derreumaux P. Effects of G33A and G33I mutations on the structures of monomer and dimer of the amyloid-beta fragment 29–42 by replica exchange molecular dynamics simulations. J Phys Chem B. 2011;115:1282–8. doi:10.1021/jp110269a. PMID:21186801.
  • Miyashita N, Straub JE, Thirumalai D. Structures of beta-amyloid peptide 1–40, 1–42, and 1-55-the 672–726 fragment of APP-in a membrane environment with implications for interactions with gamma-secretase. J Am Chem Soc. 2009;131:17843–52.
  • Chebaro Y, Mousseau N, Derreumaux P. Structures and thermodynamics of Alzheimer's amyloid-beta Abeta(16-35) monomer and dimer by replica exchange molecular dynamics simulations: implication for full-length Abeta fibrillation. J Phys Chem B. 2009;113:7668–75. doi:10.1021/jp900425e. PMID:19415895.
  • Yang M, Teplow DB. Amyloid beta-protein monomer folding: free-energy surfaces reveal alloform-specific differences. J Mol Biol. 2008;384:450–64. doi:10.1016/j.jmb.2008.09.039. PMID:18835397.
  • Chen W, Mousseau N, Derreumaux P. The conformations of the amyloid-beta (21-30) fragment can be described by three families in solution. J Chem Phys. 2006;125:084911. doi:10.1063/1.2337628. PMID:16965061.
  • Wei G, Shea JE. Effects of solvent on the structure of the Alzheimer amyloid-beta(25-35) peptide. Biophys J. 2006;91:1638–47. doi:10.1529/biophysj.105.079186. PMID:16766615.
  • Baumketner A, Shea JE. Folding landscapes of the Alzheimer amyloid-beta(12-28) peptide. J Mol Biol. 2006;362:567–79. doi:10.1016/j.jmb.2006.07.032. PMID:16930617.
  • Krone MG, Baumketner A, Bernstein SL, Wyttenbach T, Lazo ND, Teplow DB, Bowers MT, Shea JE. Effects of familial Alzheimer's disease mutations on the folding nucleation of the amyloid beta-protein. J Mol Biol. 2008;381:221–8. doi:10.1016/j.jmb.2008.05.069. PMID:18597778.
  • De Simone A, Derreumaux P. Low molecular weight oligomers of amyloid peptides display beta-barrel conformations: a replica exchange molecular dynamics study in explicit solvent. J Chem Phys. 2010;132:165103. doi:10.1063/1.3385470. PMID:20441311.
  • Wei G, Jewett AI, Shea JE. Structural diversity of dimers of the Alzheimer amyloid-beta(25-35) peptide and polymorphism of the resulting fibrils. Phys Chem Chem Phys. 2010;12:3622–9. doi:10.1039/c000755m. PMID:20336261.
  • Jiang P, Li W, Shea JE, Mu Y. Resveratrol inhibits the formation of multiple-layered beta-sheet oligomers of the human islet amyloid polypeptide segment 22–27. Biophys J. 2011;100:1550–8. doi:10.1016/j.bpj.2011.02.010. PMID:21402038.
  • Li H, Luo Y, Derreumaux P, Wei G. Carbon nanotube inhibits the formation of beta-sheet-rich oligomers of the Alzheimer's amyloid-beta(16-22) peptide. Biophys J. 2011;101:2267–76. doi:10.1016/j.bpj.2011.09.046. PMID:22067167.
  • Brown AM, Lemkul JA, Schaum N, Bevan DR. Simulations of monomeric amyloid beta-peptide (1-40) with varying solution conditions and oxidation state of Met35: implications for aggregation. Arch Biochem Biophys. 2014;545:44–52. doi:10.1016/j.abb.2014.01.002. PMID:24418316.
  • Gerben SR, Lemkul JA, Brown AM, Bevan DR. Comparing atomistic molecular mechanics force fields for a difficult target: a case study on the Alzheimer's amyloid beta-peptide. J Biomol Struct Dyn. 2014;32:1817–32. doi:10.1080/07391102.2013.838518. PMID:24028075.
  • Somavarapu AK, Kepp KP. The Dependence of Amyloid-beta Dynamics on Protein Force Fields and Water Models. Chemphyschem. 2015;16:3278–89. doi:10.1002/cphc.201500415. PMID:26256268.
  • Buck M, Bouguet-Bonnet S, Pastor RW, MacKerell AD. Importance of the CMAP Correction to the CHARMM22 Protein Force Field: Dynamics of Hen Lysozyme. Biophys J. 2006;90:L36−L38. doi:10.1529/biophysj.105.078154. PMID:16361340.
  • Huang C, Li C, Choi PYK, Nandakumar K, Kostiuk LW. Effect of cut-off distance used in molecular dynamics simulations on fluid properties. Mol Sim. 2010;36:856–64. doi:10.1080/08927022.2010.489556.
  • Beck DAC, Armen RS, Daggett V. Cutoff Size Need Not Strongly Influence Molecular Dynamics Results for Solvated Polypeptides. Biochem. 2005;44:609–16. doi:10.1021/bi0486381.
  • Schreiber H, Steinhauser O. Cutoff Size Does Strongly Influence Molecular Dynamics Results on Solvated Polypeptides. Biochem. 1992;31:5856–60. doi:10.1021/bi00140a022.
  • Jana AK, Sengupta N. Aβ self-association and adsorption on a hydrophobic nanosurface: competitive effects and the detection of small oligomers via electrical response. Soft Matter. 2015;11:269–79. doi:10.1039/C4SM01845A. PMID:25407676.
  • Menon S, Sengupta N. Influence of Hyperglycemic Conditions on Self-Association of the Alzheimer's Amyloid β (Aβ1−42) Peptide. ACS OMEGA. 2017;2:2134–47. doi:10.1021/acsomega.7b00018.
  • Davis CH, Berkowitz ML. Interaction Between Amyloid-β (1–42) Peptide and Phospholipid Bilayers: A Molecular Dynamics Study. Biophy. J. 2009;96:785–97. doi:10.1016/j.bpj.2008.09.053.
  • Zhu X, Bora PR, Barman A, Singh R, Prabhakar R. Dimerization of the Full-Length Alzheimer Amyloid β-Peptide (Aβ42) in Explicit Aqueous Solution: A Molecular Dynamics Study. J Phys Chem B. 2012;116:4405–16. doi:10.1021/jp210019h. PMID:22448932.
  • Truong M, Viet MH, Nguyen PH, Hu CK, Li MS. Effect of Taiwan Mutation (D7H) on Structures of Amyloid-β Peptides: Replica Exchange Molecular Dynamics Study. J Phys Chem B. 2014;118:8972–81. doi:10.1021/jp503652s. PMID:25010208.
  • Jose JC, Chatterjee P, Sengupta N. Cross Dimerization of Amyloid-β and αSynuclein Proteins in Aqueous Environment: A Molecular Dynamics Simulations Study. PLOS One. 2014;9:e106883. doi:10.1371/journal.pone.0106883. PMID:25210774.
  • Bora PR, Prabhakar R. Elucidation of Interactions of Alzheimer Amyloid β Peptides (Aβ40 and Aβ42) with Insulin Degrading Enzyme: A Molecular Dynamics Study. 2010;49:3947–56.
  • Das P, Murray B, Belfort G. Alzheimer's Protective A2T Mutation Changes the Conformational Landscape of the Ab1–42 Monomer Differently Than Does the A2V Mutation. Biophys J. 2015;108:738–47. doi:10.1016/j.bpj.2014.12.013. PMID:25650940.
  • Das P, Chacko AR, Belfort G. Alzheimer's Protective Cross-Interaction between Wild-Type and A2T Variants Alters Aβ42 Dimer Structure. ACS Chem. Neurosci. 2017;8:606–18. doi:10.1021/acschemneuro.6b00357. PMID:28292185.
  • Rosenman DJ, Wang C, Garcia AE. Characterization of Aβ Monomers through the Convergence of Ensemble Properties among Simulations with Multiple Force Fields. J Phys Chem B. 2016;120:259–77. doi:10.1021/acs.jpcb.5b09379. PMID:26562747.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.