10
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Dielectric and Transport Properties of Strontium Modified Calcium Copper Titanate

, &
Pages 679-690 | Received 20 Sep 2018, Accepted 25 Oct 2018, Published online: 31 Dec 2018

References

  • A. P Ramirez, M. A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, S. M. Shapiro. Giant dielectric constant response in a copper-titanate. Solid State Commun. 2000, 115, 200–217.
  • N. Kolev, R. P. Bontchev, A. J. Jacobson, V. N. Popov, V. G. Hadjiev, A. P. Litvinchuk, M. N. Iliev. Raman spectroscopy of CaCu3Ti4O12. Phys. Rev. B, 2002, 66, 132102.
  • W. Kobayashi, I. Terasaki. CaCu3Ti4O12∕CaTiO3 composite dielectrics: Ba∕Pb-free dielectric ceramics with high dielectric constants. Appl. Phys. Lett. 2005, 87, 032902.
  • T. B. Adams, D. C. Sinclair, A. R. West. Giant barrier layer capacitance effects in CaCu3Ti4O12 Ceramics. Adv. Mater. 2002, 14, 1321–1323.
  • L. Liu, M. Wu, Y. Huang, L .Fang, H. Fan, H. Dammak, M. P. Thi. Effect of mechanical activation on the structure and ferroelectric property of Na0.5K0.5NbO3. Mater. Res. Bull. 2011, 46, 1467–1472.
  • L. Liu, M. Wu, Y.Huang, L.Fang, H. Fan, H. Dammak, M. P. Thi. Na0.5K0.5NbO3 and 0.9Na0.5K0.5NbO3–0.1Bi0.5Na0.5TiO3 nanocrystalline powders synthesized by low-temperature solid-state reaction. Adv.Powd.Tech. 2013, 24, 908–912.
  • L. Ni, X. M. Chen, X. Q. Liu. Structure and modified giant dielectric response in CaCu3 (Ti1− xSnx)4O12 ceramics. Mater. Chem. Phys. 2010, 124, 982–986.
  • J. Cai, Y-H. Lin, B. Cheng, C.W. Nan. Dielectric and nonlinear electrical behaviors observed in Mn-doped CaCu3Ti4O12 ceramic. Appl. Phys. Lett. 2007, 91, 252905.
  • R. Kashyap, R. K.Mishra, O. P.Thakur, R. P.Tandon. Structural, dielectric properties and electrical conduction behaviour of Dy substituted CaCu3Ti4O12 ceramics. Ceram. Int. 2012, 38, 6807–6813.
  • L. F. Xu, K. Sun, X. Feng, H. Xiao, R. L. Wang, C. P. Yangy. Abnormal capacitance–voltage behaviors of bismuth-doped CaCu3Ti4O12 ceramics. Int. J. Modern Phys. B 2017, 31 1750133.
  • M. Sahu, R. N. P. Choudhary, S. Das, S. Otta, B. K. Roul. Inter-grain mediated intrinsic and extrinsic barrier layer network mechanism involved in Ca1Cu3Ti4O12 bulk ceramic. J. Mat. Sci: Mater. Electron. 2017, 28, 15676–15684.
  • P. Thongbai, J. Jumpatam, T. Yamwong, S. Maensiri. Effects of Ta5+ doping on microstructure evolution, dielectric properties and electrical response in CaCu3Ti4O12 ceramics. J. Eur. Soc. 2012, 32, 2423–2430.
  • M. A. Sulaimain, S. D. Hutagalung, M. F. Ain, Z. A. Ahmad. Dielectric properties of Nb-doped CaCu3Ti4O12 electroceramics measured at high frequencies. J. Alloys Comp. 2010, 493, 486–492.
  • P. P. Rout, S. K. Pradhan, B. K. Roul. Room temperature ferroelectricity in multiferroics HoMnO3 ceramics. Phys. B Condensed Matter. 2012, 407, 2072–2077.
  • S. Y. Chung. Lattice distortion and polarization switching in calcium copper titanate. Appl. Phys. Lett. 2005, 87 052901.
  • A. K Jonscher. The ‘universal’ dielectric response. Nature 1977, 267, 673–679.
  • H. Xue, X. Guan, R. Yu, Z. Xiong. Dielectric properties and current–voltage nonlinear behavior of Ca1−xSrxCu3Ti4O12 ceramics. J. Alloys Comp. 482 (2009) 14–17.
  • X. Huang, H. Zhang, M. Wei, Y. Lai, J. Li. Effect of semiconductive grain and microstructure on the dielectric properties of CaCu3Ti4O12 ceramics with Sr2+ doping, J. Alloys Comp. 2017, 708, 1026–1032.
  • C. G. Koop. On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 1951, 83, 121–124.
  • R. P. Pawar, V. Puri. Structural, electrical and dielectric properties of (Sr1−xCax) MnO3 (0 ≤ x ≤ 1.0) ceramics. Ceram. Int. 2014, 40, 10423–10430.
  • U. C Chung, C. Elissalde, S. Mornet, M. Maglione, C. Estournes. Controlling internal barrier in low loss BaTiO3 supercapacitors. Appl. Phys. Lett. 2009, 94, 072903.
  • K. Parida, S. K. Dehury, R. N. P. Choudhary. Structural, electrical and magneto-electric characteristics of complex multiferroic perovskite Bi0.5Pb0.5Fe0.5Ce0.5O3, J Mater. Sci: Mater. Electron. 2016, 27, 11211–11219.
  • P. Ganguly, S. Devi, A. K. Jha, K. L. Deori. Dielectric and Pyroelectric Studies of Tungsten-Bronze Structured Ba5SmTi3Nb7O30 ferroelectric ceramics. Ferroelectrics 2009, 381, 111–119.
  • S. Sahoo, S. Hajra, M. De, R. N. P. Choudhary. Resistive, capacitive and conducting properties of Bi0.5Na0.5TiO3-BaTiO3 solid solution. Ceram. Int. 2017, 44, 4719–4726.
  • E. Mostafavi, A. Ataie, M. Ahmadzadeh, M. Palizdar, T. P. Comyn, A. J. Bell. Synthesis of nano-structured Bi1−xBaxFeO3 ceramics with enhanced magnetic and electrical properties. Mater. Chem. Phys. 2015, 162, 106–112.
  • S.S. Yadava, L. Singh, S. Sharma, K. D. Mandal, N. B. Singh. Effect of temperature on the dielectric and ferroelectric properties of a nanocrystalline hexagonal Ba4YMn3O11.5 − δ ceramic synthesized by a chemical route. RSC Adv. 2016, 6, 68247–68253.
  • M. Ram. Electrical characteristics of Li(Ni7/10Fe3/10)VO4 ceramics. J. Alloy. Compd. 2011, 509 1744–1748.
  • B. Behera, P. Nayak, R. N. P.Choudhary. Structural and impedance properties of KBa2V5O15 ceramics. Mat. Res. Bull. 2008, 43, 401–410.
  • A. R. James, K. Srinivas. Low temperature fabrication and impedance spectroscopy of PMN-PT ceramics. Mater. Res. Bull. 1999, 34, 1301.
  • T. Badapanda, V. Senthil, S. K. Rout, S. Panigrahi, T. P. Sinha. Dielectric relaxation on Ba1−xBi2x/3Zr0. 25Ti0. 75O3 ceramic. Mater. Chem. Phys. 2012, 133, 863–870.
  • S. Thakur, R. Rai, I. Bdikin, M. A. Valente. Impedance and modulus spectroscopy Characterization of Tb modified Bi0.8A0.1Pb0.1Fe0.9Ti0.1O3 ceramics. Mater. Res. 2016, 19, 1–8.
  • S. Nath, S. K. Barick, S. Hajra, R. N. P. Choudhary. Studies of structural, impedance spectroscopy and magnetoelectric properties of (SmLi)1/2(Fe2/3Mo1/3)O3 electroceramics. J. Mater. Sci: Mater. Electron. 2018, 29, 12251–12257.
  • C. K. Suman, K. Prasad, R. N. P. Choudhary. Complex impedance studies on tungsten-bronze electroceramic: Pb2Bi3LaTi5O18. J. Mater.Sci. 2006, 41, 369–375.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.