1,522
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Mapping spatial distribution of crop residues using PRISMA satellite imaging spectroscopy

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2122872 | Received 28 Feb 2022, Accepted 06 Sep 2022, Published online: 21 Sep 2022

References

  • Ali, A. M., Darvishzadeh, R., Skidmore, A. K., & van Duren, I. (2017). Specific leaf area estimation from leaf and canopy reflectance through optimization and validation of vegetation indices. Agricultural and Forest Meteorology, 236, 162–16. https://doi.org/10.1016/j.agrformet.2017.01.015
  • Arsenault, E., & Bonn, F. (2005). Evaluation of soil erosion protective cover by crop residues using vegetation indices and spectral mixture analysis of multispectral and hyperspectral data. Catena, 62(2–3), 157–172. https://doi.org/10.1016/j.catena.2005.05.003
  • Asner, G. P. (1998). Biophysical and biochemical sources of variability in canopy reflectance. Remote Sensing of Environment, 64(3), 234–253. https://doi.org/10.1016/S0034-4257(98)00014-5
  • Asner, G. P., & Heidebrecht, K. B. (2002). Spectral unmixing of vegetation, soil and dry carbon cover in arid regions: Comparing multispectral and hyperspectral observations. International Journal Remote Sensing, 23(19), 3939–3958. https://doi.org/10.1080/01431160110115960
  • Bannari, A., Staenz, K., Champagne, C., & Khurshid, K. S. (2015). Spatial variability mapping of crop residue using Hyperion (EO-1) hyperspectral data. Remote Sensing, 7(6), 8107–8127. https://doi.org/10.3390/rs70608107
  • Berger, K., Hank, T., Halabuk, A., Rivera-Caicedo, J. P., Wocher, M., Mojses, M., Gerhátová, K., Tagliabue, G., Dolz, M. M., Venteo, A. B. P., & Verrelst, J. (2021). Assessing non-photosynthetic cropland biomass from spaceborne hyperspectral imagery. Remote Sensing, 13(22), 4711. https://doi.org/10.3390/rs13224711
  • Berger, K., Verrelst, J., Féret, J. B., Wang, Z., Wocher, M., Strathmann, M., Danner, M., Mauser, W., & Hank, T. (2020). Crop nitrogen monitoring: Recent progress and principal developments in the context of imaging spectroscopy missions. Remote Sensing of Environment, 242, 111758. https://doi.org/10.1016/j.rse.2020.111758
  • Busetto, L., & Ranghetti, L. (2020). prismaread: A tool for facilitating access and analysis of PRISMA L1/L2 hyperspectral imagery v1.0.0. URL https://irea-cnr-mi.github.io/prismaread/
  • Cogliati, S., Sarti, F., Chiarantini, L., Cosi, M., Lorusso, R., Lopinto, E., Miglietta, F., Genesio, L., Guanter, L., Damm, A., Pérez López, S., Schefflerh, D., Tagliabue, G., Panigada, C., Rascher, U., Dowling, T. P. F., Giardino, C., & Colombo, R. (2021). The PRISMA imaging spectroscopy mission: Overview and first performance analysis. Remote Sensing of Environment, 262, 112499. https://doi.org/10.1016/j.rse.2021.112499
  • Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37, 35–46. https://doi.org/10.1016/0034-4257(91)90048-B
  • Curran, P. J. (1989). Remote sensing of foliar chemistry. Remote Sensing of Environment, 30(3), 271–278. https://doi.org/10.1016/0034-4257(89)90069-2
  • Daughtry, C. S. T. (2001). Discriminating crop residues from soil by shortwave infrared reflectance. Agronomy Journal, 93(1), 125–131. https://doi.org/10.2134/agronj2001.931125x
  • Daughtry, C. S. T., & Hunt, E. R.Jr. (2008). Mitigating the effects of soil and residue water contents on remotely sensed estimates of crop residue cover. Remote Sensing of Environment, 112(4), 1647–1657. https://doi.org/10.1016/j.rse.2007.08.006
  • Daughtry, C. S. T., Hunt, E. R., Doraiswamy, P. C., Jr, & McMurtrey III, J. E. (2005). Remote sensing the spatial distribution of crop residues. Agronomy Journal, 97(3), 864–871. https://doi.org/10.2134/agronj2003.0291
  • Daughtry, C. S. T., Hunt, E. R., & McMurtrey, J. E. (2004). Assessing crop residue cover using shortwave infrared reflectance. Remote Sensing of Environment, 90(1), 126–134. https://doi.org/10.1016/j.rse.2003.10.023
  • European Commission. (2018). Directorate-general for agriculture and rural development. Modernising and simplifying the CAP—Challenges for agriculture and rural areas: Environment and climate dimensions. In Agriculture and rural development background documents. EC.
  • Féret, J.-B., Berger, K., de Boissieu, F., & Malenovský, Z. (2021). PROSPECT-PRO for estimating content of nitrogen-containing leaf proteins and other carbon-based constituents. Remote Sensing of Environment, 252, 112173. https://doi.org/10.1016/j.rse.2020.112173
  • Féret, J. B., Berger, K., de Boissieu, F., & Malenovský, Z. (2021). PROSPECT-PRO for estimating content of nitrogen-containing leaf proteins and other carbon-based constituents. Remote Sensing of Environment, 252, 112173. https://doi.org/10.1016/j.rse.2020.112173
  • Haddaway, N. R., Hedlund, K., Jackson, L. E., Kätterer, T., Lugato, E., Thomsen, I. K., Jørgensen, H. B., & Isberg, P. E. (2017). How does tillage intensity affect soil organic carbon? A systematic review. Environmental Evidence, 5, 1. https://doi.org/10.1186/s13750-016-0052-0
  • Hank, T. B., Berger, K., Bach, H., Clevers, J. G. P. W., Gitelson, A., Zarco-Tejada, P., & Mauser, W. (2019). Spaceborne Imaging Spectroscopy for Sustainable Agriculture: Contributions and Challenges. Surveys in Geophysics, 40, 515–551. https://doi.org/10.1007/s10712-018-9492-0
  • Hively, W. D., Lamb, B. T., Daughtry, C. S., Serbin, G., Dennison, P., Kokaly, R. F., Wu, Z., & Masek, J. G. (2021). Evaluation of SWIR crop residue bands for the landsat next mission. Remote Sensing, 13(18), 3718. https://doi.org/10.3390/rs13183718
  • Hively, W. D., Lamb, B. T., Daughtry, C. S., Shermeyer, J., McCarty, G. W., & Quemada, M. (2018). Mapping crop residue and tillage intensity using WorldView-3 satellite shortwave infrared residue indices. Remote Sensing, 10(10), 1657. https://doi.org/10.3390/rs10101657
  • Kokaly, R. F., Asner, G. P., Ollinger, S. V., Martin, M. E., & Wessman, C. A. (2009). Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies. Remote Sensing of Environment, 113(Supplement 1), S78–S91. https://doi.org/10.1016/j.rse.2008.10.018
  • Lal, R., Kimble, J. M., Follett, R. F., & Cole, C. V. (1999). The potential of U.S. cropland to sequester carbon and mitigate the greenhouse effect. Lewis Publishers.
  • Lehnert, L. W., Meyer, H., Obermeier, W. A., Silva, B., Regeling, B., Thies, B., & Bendix, J. (2019). Hyperspectral data analysis in R: The hsdar package. Journal of Statistical Software, 89(12), 1–23. https://doi.org/10.18637/jss.v089.i12
  • Li, Z., & Guo, X. (2016). Remote sensing of terrestrial non-photosynthetic vegetation using hyperspectral, multispectral, SAR, and LiDAR data. Progress in Physical Geography, 40(2), 276–304. https://doi.org/10.1177/0309133315582005
  • Marshall, M., Belgiu, M., Boschetti, M., Pepe, M., Stein, A., & Nelson, A. (2022). Field-Level crop yield estimation with PRISMA and Sentinel-2. ISPRS Journal of Photogrammetry and Remote Sensing, 187, 191–210. https://doi.org/10.1016/j.isprsjprs.2022.03.008
  • Mzid, N., Castaldi, F., Tolomio, M., Pascucci, S., Casa, R., & Pignatti, S. (2022). Evaluation of agricultural bare soil properties retrieval from landsat 8, sentinel-2 and PRISMA satellite data. Remote Sensing, 14(3), 714. https://doi.org/10.3390/rs14030714
  • Pepe, M., Pompilio, L., Gioli, B., Busetto, L., & Boschetti, M. (2020). Detection and classification of non-photosynthetic vegetation from PRISMA hyperspectral data in croplands. Remote Sensing, 12(23), 3903. https://doi.org/10.3390/rs12233903
  • Pompilio, L., Pedrazzi, G., Cloutis, E. A., Craig, M. A., & Roush, T. L. (2010). Exponential gaussian approach for spectral modelling: The EGO algorithm II. Band asymmetry. Icarus, 208(2), 811–823. https://doi.org/10.1016/j.icarus.2010.03.020
  • Pompilio, L., Pedrazzi, G., Sgavetti, M., Cloutis, E. A., Craig, M. A., & Roush, T. L. (2009). Exponential Gaussian approach for spectral modeling: The EGO algorithm I. Band saturation. Icarus, 201(2), 781–794. https://doi.org/10.1016/j.icarus.2009.01.022
  • Pompilio, L., Pepe, M., Pedrazzi, G., & Marinangeli, L. (2014). Informational clustering of hyperspectral data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(6), 2209–2223. https://doi.org/10.1109/JSTARS.2013.2294053
  • Ranaivoson, L., Naudin, K., Ripoche, A., Affholder, F., Rabeharisoa, L., & Corbeels, M. (2017). Agro-ecological functions of crop residues under conservation agriculture. A review. Agronomy for Sustainable Development, 37(4), 1–17. https://doi.org/10.1007/s13593-017-0432-z
  • R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. URL https://www.R-project.org/
  • Roberts, D. A., Smith, M. O., & Adams, J. B. (1993). Green vegetation, nonphotosynthetic vegetation and soils in AVIRIS data. Remote Sensing of Environment, 44(2–3), 255–269. https://doi.org/10.1016/0034-4257(93)90020-X
  • Smith, P., Soussana, J. F., Angers, D., Schipper, L., Chenu, C., Rasse, D. P., Batjes, N. H., Van Egmond, F., McNeill, S., Kuhnert, M., Arias‐Navarro, C., Olesen, J. E., Chirinda, N., Fornara, D., Wollenberg, E., Álvaro‐Fuentes, J., Sanz‐Cobena, A., & Klumpp, K. (2020). How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Global Change Biology, 26(1), 219–241. https://doi.org/10.1111/gcb.14815
  • Tagliabue, G., Boschetti, M., Bramati, G., Candiani, G., Colombo, R., Nutini, F., Pompilio, L., Rivera-Caicedo, J. P., Rossi, M., Rossini, M., Verrelst, J., & Panigada, C. (2022). Hybrid retrieval of crop traits from multi-temporal prisma hyperspectral imagery. ISPRS J. Photogramm. Remote Sens, 187, 362–377. https://doi.org/10.1016/j.isprsjprs.2022.03.014. Under revision.
  • Therneau, T., & Atkinson, B. (2022). rpart: Recursive Partitioning and Regression Trees. R package version 4.1.16. https://CRAN.R-project.org/package=rpart
  • Th. Fourty Baret, F., Jacquemoud, S., Schmuck, G., & Verdebout, J. (1996). Leaf optical properties with explicit description of its biochemical composition: Direct and inverse problems. Remote Sensing of Environment, 56(2), 104–117. https://doi.org/10.1016/0034-4257(95)00234-0
  • Verrelst, J., Rivera-Caicedo, J. P., Reyes-Muñoz, P., Morata, M., Amin, E., Tagliabue, G., Panigada, C., Hank, T., & Berger, K. (2021). Mapping landscape canopy nitrogen content from space using PRISMA data. ISPRS Journal of Photogrammetry and Remote Sensing, 178, 382–395. https://doi.org/10.1016/j.isprsjprs.2021.06.017
  • Zheng, B., Campbell, J. B., & de Beurs, K. M. (2012). Remote sensing of crop residue cover using multi-temporal Landsat imagery. Remote Sensing of Environment, 117, 177–183. https://doi.org/10.1016/j.rse.2011.09.016