2,388
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Integrating Copernicus land cover data into the i-Tree Cool Air model to evaluate and map urban heat mitigation by tree cover

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2125833 | Received 18 Mar 2022, Accepted 13 Sep 2022, Published online: 26 Sep 2022

References

  • Baldwin, J. W., Dessy, J. B., Vecchi, G. A., & Oppenheimer, M. (2019). Temporally compound heat wave events and global warming: An emerging hazard. Earth’s Future, 7(4), 411–18. https://doi.org/10.1029/2018EF000989
  • Beniston, M., Stephenson, D. B., Christensen, O. B., Ferro, C. A. T., Frei, C., Goyette, S., Halsnaes, K., Holt, T., Jylhä, K., Koffi, B., Palutikof, J., Schöll, R., Semmler, T., & Woth, K. (2007). Future extreme events in European climate: An exploration of regional climate model projections. Climatic Change, 81(SUPPL. 1), 71–95. https://doi.org/10.1007/s10584-006-9226-z
  • Bowler, D. E., Buyung-Ali, L., Knight, T. M., & Pullin, A. S. (2010a). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and Urban Planning, 97(3), 147–155. https://doi.org/10.1016/j.landurbplan.2010.05.006
  • Bowler, D. E., Buyung-Ali, L., Knight, T. M., & Pullin, A. S. (2010b). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and Urban Planning, 97(3), 147–155. https://doi.org/10.1016/j.landurbplan.2010.05.006
  • Bucchignani, E., Zollo, A. L., & Montesarchio, M. (2021). Analysis of expected climate extreme variability with regional climate simulations over Napoli Capodichino Airport: A contribution to a climate risk assessment framework. Earth, 2(4), 980–996. https://doi.org/10.3390/earth2040058
  • Buccolieri, R., Santiago, J. L., Rivas, E., & Sanchez, B. (2018). Review on urban tree modelling in CFD simulations: Aerodynamic, deposition and thermal effects. Urban Forestry and Urban Greening, 31, 212–220. https://doi.org/10.1016/j.ufug.2018.03.003
  • Cadenasso, M. L., Pickett, S. T. A., & Schwarz, K. (2007). Spatial heterogeneity in urban ecosystems: Reconceptualizing land cover and a framework for classification. Frontiers in Ecology and the Environment, 5(2), 80–88. https://doi.org/10.1890/1540-9295 (2007)5[80:SHIUER]2.0.CO;2
  • de’Donato, F., Scortichini, M., de Sario, M., de Martino, A., & Michelozzi, P. (2018). Temporal variation in the effect of heat and the role of the Italian heat prevention plan. Public Health, 161, 154–162. https://doi.org/10.1016/j.puhe.2018.03.030
  • Endreny, T. A., Avignone-Rossa, C., & Nastro, R. A. (2020). Generating electricity with urban green infrastructure microbial fuel cells. Journal of Cleaner Production, 263, 121337. https://doi.org/10.1016/j.jclepro.2020.121337
  • Endreny, T. A., Sica, F., & Nowak, D. J. (2020). Tree cover is unevenly distributed across cities globally, with lowest levels near highway pollution sources. Frontiers in Sustainable Cities 2, 16. https://doi.org/10.3389/frsc.2020.00016
  • Founda, D., Pierros, F., Petrakis, M., & Zerefos, C. (2015). Interdecadal variations and trends of the Urban Heat Island in Athens (Greece) and its response to heat waves. Atmospheric Research, 161–162, 1–13. https://doi.org/10.1016/j.atmosres.2015.03.016
  • Gatto, E., Buccolieri, R., Perronace, L., & Santiago, J. L. (2021). The challenge in the management of historic trees in urban environments during climate change: The case of corso trieste (Rome, Italy). Atmosphere, 12(4), 500. https://doi.org/10.3390/atmos12040500
  • Guerreiro, S. B., Dawson, R. J., Kilsby, C., Lewis, E., & Ford, A. (2018). Future heat-waves, droughts and floods in 571 European cities. Environmental Research Letters, 13(3), 034009. https://doi.org/10.1088/1748-9326/aaaad3
  • Guo, Y., Gasparrini, A., Li, S., Sera, F., Vicedo-Cabrera, A. M., de Sousa Zanotti Stagliorio Coelho, M., Saldiva, P. H. N., Lavigne, E., Tawatsupa, B., Punnasiri, K., Overcenco, A., Correa, P. M., Ortega, N. V., Kan, H., Osorio, S., Jaakkola, J. J. K., Ryti, N. R. I., Goodman, P. G., Zeka, A., … Michelozzi, P. (2018). Quantifying excess deaths related to heatwaves under climate change scenarios: A multicountry time series modelling study. PLoS Medicine, 15(7), 1–17. https://doi.org/10.1371/journal.pmed.1002629
  • Haines, A., Kovats, R., Campbell-Lendrum, D., & Corvalan, C. (2006). Climate change and human health: Impacts, vulnerability, and mitigation. Lancet, 367(9528), 2101–2109. https://doi.org/10.1016/S0140-6736(06)68933-2
  • He, B. J., Wang, J., Liu, H., & Ulpiani, G. (2021). Localized synergies between heat waves and urban heat islands: Implications on human thermal comfort and urban heat management. Environmental Research, 193, 110584. https://doi.org/10.1016/j.envres.2020.110584
  • Hirabayashi, S., & Endreny, T. A. (2016). Surface and Upper Weather Pre-processor for i-Tree Eco and Hydro. 20 09 2022. https://www.itreetools.org/documents/554/Surface_and_Upper_Weather_Pre-processor_Description.pdf
  • ISTAT. (2021a). Bilancio demografico anno 2021. https://demo.istat.it/bilmens/query.php?lingua=ita&Rip=S4&Reg=R15&Pro=P063&Com=49&anno=2021&submit=Tavola
  • ISTAT. (2021b). Temperatura e precipitazione nelle città capoluogo di regione e città metropolitane - anno 2020 e serie storica 2010-2020. https://www.istat.it/it/archivio/263811
  • Klok, L., Zwart, S., Verhagen, H., & Mauri, E. (2012). The surface heat island of Rotterdam and its relationship with urban surface characteristics. Resources, Conservation and Recycling, 64, 23–29. https://doi.org/10.1016/j.resconrec.2012.01.009
  • Konarska, J., Uddling, J., Holmer, B., Lutz, M., Lindberg, F., Pleijel, H., & Thorsson, S. (2016). Transpiration of urban trees and its cooling effect in a high latitude city. International Journal of Biometeorology, 60(1), 159–172. https://doi.org/10.1007/s00484-015-1014-x
  • Krayenhoff, E. S., Christen, A., Martilli, A., & Oke, T. R. (2014). A multi-layer radiation model for urban neighbourhoods with trees. Boundary-Layer Meteorology, 151(1), 139–178. https://doi.org/10.1007/s10546-013-9883-1
  • Lee, S. H., & Park, S. U. (2008). A vegetated urban canopy model for meteorological and environmental modelling. Boundary-Layer Meteorology, 126(1), 73–102. https://doi.org/10.1007/s10546-007-9221-6
  • Lemus-Canovas, M., Martin-Vide, J., Moreno-Garcia, M. C., & Lopez-Bustins, J. A. (2020). Estimating Barcelona’s metropolitan daytime hot and cold poles using landsat-8 land surface temperature. Science of the Total Environment 699, 134307. https://doi.org/10.1016/j.scitotenv.2019.134307
  • Li, D., & Bou-Zeid, E. (2013). Synergistic interactions between urban heat islands and heat waves: The impact in cities is larger than the sum of its parts. Journal of Applied Meteorology and Climatology, 52(9), 2051–2064. https://doi.org/10.1175/JAMC-D-13-02.1
  • Li, T., & Meng, Q. (2018). A mixture emissivity analysis method for urban land surface temperature retrieval from Landsat 8 data. Landscape and Urban Planning, 179, 63–71. https://doi.org/10.1016/j.landurbplan.2018.07.010
  • Liu, X., Li, X. X., Harshan, S., Roth, M., & Velasco, E. (2017). Evaluation of an urban canopy model in a tropical city: The role of tree evapotranspiration. Environmental Research Letters, 12(9), 094008. https://doi.org/10.1088/1748-9326/aa7ee7
  • Maimaitiyiming, M., Ghulam, A., Tiyip, T., Pla, F., Latorre-Carmona, P., Halik, Ü., Sawut, M., & Caetano, M. (2014). Effects of green space spatial pattern on land surface temperature: Implications for sustainable urban planning and climate change adaptation. ISPRS Journal of Photogrammetry and Remote Sensing, 89, 59–66. https://doi.org/10.1016/j.isprsjprs.2013.12.010
  • Massetti, L., Petralli, M., Napoli, M., Brandani, G., Orlandini, S., & Pearlmutter, D. (2019). Effects of deciduous shade trees on surface temperature and pedestrian thermal stress during summer and autumn. International Journal of Biometeorology, 63(4), 467–479. https://doi.org/10.1007/s00484-019-01678-1
  • McGeehin, M. A., & Mirabelli, M. (2001). The potential impacts of climate variability and change on temperature-related morbidity and mortality in the United States. Environmental Health Perspectives, 109(suppl 2), 185–189. https://doi.org/10.1289/ehp.109-1240665
  • Meehl, G. A., & Tebaldi, C. (2004). More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305(5686), 994–997. https://doi.org/10.1126/science.1098704
  • Meier, F., & Scherer, D. (2012). Spatial and temporal variability of urban tree canopy temperature during summer 2010 in Berlin, Germany. Theoretical and Applied Climatology, 110(3), 373–384. https://doi.org/10.1007/s00704-012-0631-0
  • Ngarambe, J., Nganyiyimana, J., Kim, I., Santamouris, M., & Young Yun, G. (2020). Synergies between urban heat island and heat waves in Seoul: The role of wind speed and land use characteristics. PLoS ONE 15(12) e0243571 . https://doi.org/10.1371/journal.pone.0243571.
  • Norton, B. A., Coutts, A. M., Livesley, S. J., Harris, R. J., Hunter, A. M., & Williams, N. S. G. (2015). Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landscape and Urban Planning, 134, 127–138. https://doi.org/10.1016/j.landurbplan.2014.10.018
  • Nowak, D. J., & Greenfield, E. J. (2020). The increase of impervious cover and decrease of tree cover within urban areas globally (2012–2017). Urban Forestry and Urban Greening 49, 126638. https://doi.org/10.1016/j.ufug.2020.126638
  • Oliveira, S., Andrade, H., & Vaz, T. (2011). The cooling effect of green spaces as a contribution to the mitigation of urban heat: A case study in Lisbon. Building and Environment, 46(11), 2186–2194. https://doi.org/10.1016/j.buildenv.2011.04.034
  • Pace, R., De Fino, F., Rahman, M. A., Pauleit, S., Nowak, D. J., & Grote, R. (2021). A single tree model to consistently simulate cooling, shading, and pollution uptake of urban trees. International Journal of Biometeorology, 65(2), 277–289. https://doi.org/10.1007/s00484-020-02030-8
  • Rahman, M. A., Franceschi, E., Pattnaik, N., Moser-Reischl, A., Hartmann, C., Paeth, H., Pretzsch, H., Rötzer, T., & Pauleit, S. (2022). Spatial and temporal changes of outdoor thermal stress: Influence of urban land cover types. Scientific Reports, 12(1), 671. https://doi.org/10.1038/s41598-021-04669-8
  • Rahman, M. A., Moser, A., Rötzer, T., & Pauleit, S. (2017). Within canopy temperature differences and cooling ability of Tilia cordata trees grown in urban conditions. Building and Environment, 114, 118–128. https://doi.org/10.1016/j.buildenv.2016.12.013
  • Rahman, M. A., Stratopoulos, L. M. F., Moser-Reischl, A., Zölch, T., Häberle, K. H., Rötzer, T., Pretzsch, H., & Pauleit, S. (2020). Traits of trees for cooling urban heat islands: A meta-analysis. Building and Environment, 170, 106606. https://doi.org/10.1016/j.buildenv.2019.106606
  • Rahmstorf, S., & Coumou, D. (2011). Increase of extreme events in a warming world. Proceedings of the National Academy of Sciences, 108(44), 17905–17909. https://doi.org/10.1073/pnas.1101766108
  • Redon, E., Lemonsu, A., & Masson, V. (2020). An urban trees parameterization for modeling microclimatic variables and thermal comfort conditions at street level with the Town Energy Balance model (TEB-SURFEX v8.0). Geoscientific Model Development, 13(2), 385–399. https://doi.org/10.5194/gmd-13-385-2020
  • Rizvi, S. H., Alam, K., & Iqbal, M. J. (2019). Spatio -temporal variations in urban heat island and its interaction with heat wave. Journal of Atmospheric and Solar-Terrestrial Physics, 185, 50–57. https://doi.org/10.1016/j.jastp.2019.02.001
  • Robine, J. M., Cheung, S. L. K., Le Roy, S., Van Oyen, H., Griffiths, C., Michel, J. P., & Herrmann, F. R. (2008). Death toll exceeded 70,000 in Europe during the summer of 2003. Comptes Rendus - Biologies, 331(2), 171–178. https://doi.org/10.1016/j.crvi.2007.12.001
  • Rötzer, T., Moser-Reischl, A., Rahman, M. A., Hartmann, C., Paeth, H., Pauleit, S., & Pretzsch, H. (2021). Urban tree growth and ecosystem services under extreme drought. Agricultural and Forest Meteorology, 308–309, 108532. https://doi.org/10.1016/j.agrformet.2021.108532
  • Rötzer, T., Rahman, M. A., Moser-Reischl, A., Pauleit, S., & Pretzsch, H. (2019). Process based simulation of tree growth and ecosystem services of urban trees under present and future climate conditions. Science of the Total Environment, 676, 651–664. https://doi.org/10.1016/j.scitotenv.2019.04.235
  • Rowe, D. B., & Getter, K. L. (2006). The role of extensive green roofs in sustainable development. HortScience, 41(5), 1276–1285. https://doi.org/10.21273/HORTSCI.41.5.1276
  • Russo, S., Dosio, A., Graversen, R. G., Sillmann, J., Carrao, H., Dunbar, M. B., Singleton, A., Montagna, P., Barbola, P., & Vogt, J. V. (2014). Magnitude of extreme heat waves in present climate and their projection in a warming world. Journal of Geophysical Research Atmospheres, 119(22), 12–500. https://doi.org/10.1002/2014JD022098
  • Sailor, D. J. (2011). A review of methods for estimating anthropogenic heat and moisture emissions in the urban environment. International Journal of Climatology, 31(2), 189–199. https://doi.org/10.1002/joc.2106
  • Sánchez, E., Gallardo, C., Gaertner, M. A., Arribas, A., & Castro, M. (2004). Future climate extreme events in the Mediterranean simulated by a regional climate model: A first approach. Global and Planetary Change, 44(1–4), 163–180. https://doi.org/10.1016/j.gloplacha.2004.06.010
  • Schwaab, J., Meier, R., Mussetti, G., Seneviratne, S., Bürgi, C., & Davin, E. L. (2021). The role of urban trees in reducing land surface temperatures in European cities. Nature Communications, 12(1), 1–11. https://doi.org/10.1038/s41467-021-26768-w
  • Shandas, V., Voelkel, J., Williams, J., & Hoffman, J. (2019). Integrating satellite and ground measurements for predicting locations of extreme urban heat. Climate, 7(1), 1–13. https://doi.org/10.3390/cli7010005
  • Sinha, P., Coville, R. C., Hirabayashi, S., Lim, B., Endreny, T. A., & Nowak, D. J. (2021). Modeling lives saved from extreme heat by urban tree cover✰. Ecological Modelling, 449, 109553. https://doi.org/10.1016/j.ecolmodel.2021.109553
  • Sinha, P., Coville, R. C., Hirabayashi, S., Lim, B., Endreny, T. A., & Nowak, D. J. (2022). Variation in estimates of heat-related mortality reduction due to tree cover in U.S. cities. Journal of Environmental Management, 301, 113751. https://doi.org/10.1016/j.jenvman.2021.113751
  • Smith, I. A., Winbourne, J. B., Tieskens, K. F., Jones, T. S., Bromley, F. L., Li, D., & Hutyra, L. R. (2021). A satellite-based model for estimating latent heat flux from urban vegetation. Frontiers in Ecology and Evolution, 9, 695995. https://doi.org/10.3389/fevo.2021.695995
  • Sobrino, J. A., Oltra-Carrió, R., Sòria, G., Bianchi, R., & Paganini, M. (2012). Impact of spatial resolution and satellite overpass time on evaluation of the surface urban heat island effects. Remote Sensing of Environment, 117, 50–56. https://doi.org/10.1016/j.rse.2011.04.042
  • Speak, A., Montagnani, L., Wellstein, C., & Zerbe, S. (2020). The influence of tree traits on urban ground surface shade cooling. Landscape and Urban Planning, 197, 103748. https://doi.org/10.1016/j.landurbplan.2020.103748
  • Susca, T., Zanghirella, F., Colasuonno, L., & Fatto, V. D. (2022). Effect of green wall installation on urban heat island and building energy use : A climate-informed systematic literature review. Renewable and Sustainable Energy Reviews, 159, 112100. https://doi.org/10.1016/j.rser.2022.112100
  • Teskey, R., Wertin, T., Bauweraerts, I., Ameye, M., McGuire, M. A., & Steppe, K. (2015). Responses of tree species to heat waves and extreme heat events. Plant Cell and Environment, 38(9), 1699–1712. https://doi.org/10.1111/pce.12417
  • Tewari, M., Yang, J., Kusaka, H., Salamanca, F., Watson, C., & Treinish, L. (2019). Interaction of urban heat islands and heat waves under current and future climate conditions and their mitigation using green and cool roofs in New York City and Phoenix, Arizona. Environmental Research Letters, 14(3), 034002. https://doi.org/10.1088/1748-9326/aaf431
  • Thom, J. K., Fletcher, T. D., Livesley, S. J., Grey, V., & Szota, C. (2022). Supporting growth and transpiration of newly planted street trees with passive irrigation systems. Water Resources Research, 58, e2020WR029526. https://doi.org/10.1029/2020WR029526
  • UN-Habitat. (2020). World cities report 2020: The value of sustainable urbanization.
  • Walters, M., & Sinnett, D. (2021). Achieving tree canopy cover targets: A case study of Bristol, UK. Urban Forestry and Urban Greening 65, 127296. https://doi.org/10.1016/j.ufug.2021.127296
  • Wang, C., Wang, Z. H., & Ryu, Y. H. (2021). A single-layer urban canopy model with transmissive radiation exchange between trees and street canyons. Building and Environment 191, 107593. https://doi.org/10.1016/j.buildenv.2021.107593
  • Ward, K., Lauf, S., Kleinschmit, B., & Endlicher, W. (2016). Heat waves and urban heat islands in Europe: A review of relevant drivers. Science of the Total Environment, 569–570, 527–539. https://doi.org/10.1016/j.scitotenv.2016.06.119
  • WWAP (2018). The United Nations world water development report 2018: Nature-Based Solutions for Water. Paris, UNESCO. ISBN 978-92-3-100264-9, www.unwater.org
  • Yang, Y., Endreny, T. A., & Nowak, D. J. (2013). A physically based analytical spatial air temperature and humidity model. Journal of Geophysical Research Atmospheres, 118(18), 10449–10463. https://doi.org/10.1002/jgrd.50803
  • Yang, C., Yan, F., & Zhang, S. (2020). Comparison of land surface and air temperatures for quantifying summer and winter urban heat island in a snow climate city. Journal of Environmental Management 265, 110563. https://doi.org/10.1016/j.jenvman.2020.110563
  • Zhang, Y., Murray, A. T., & Turner, B. L. (2017). Optimizing green space locations to reduce daytime and nighttime urban heat island effects in Phoenix, Arizona. Landscape and Urban Planning, 165(May), 162–171. https://doi.org/10.1016/j.landurbplan.2017.04.009
  • Ziter, C. D., Pedersen, E. J., Kucharik, C. J., & Turner, M. G. (2019). Scale-dependent interactions between tree canopy cover and impervious surfaces reduce daytime urban heat during summer. Proceedings of the National Academy of Sciences of the United States of America, 116(15), 7575–7580. https://doi.org/10.1073/pnas.1817561116
  • Zölch, T., Maderspacher, J., Wamsler, C., & Pauleit, S. (2016). Using green infrastructure for urban climate-proofing: An evaluation of heat mitigation measures at the micro-scale. Urban Forestry and Urban Greening, 20, 305–316. https://doi.org/10.1016/j.ufug.2016.09.011