769
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Polarimetric radar observation of the melting layer during the pre-summer rainy season over South China

, , &
Article: 2155582 | Received 20 May 2022, Accepted 02 Dec 2022, Published online: 19 Jan 2023

References

  • Allabakash, S., Lim, S., & Jang, B.-J. (2019). Melting layer detection and characterization based on range height indicator–quasi vertical profiles. Remote Sens, 11(23), 2848. https://doi.org/10.3390/rs11202335
  • Austin, P. M., & Bemis, A. C. (1950). A quantitative study of the “bright band” in radar precipitation echoes. J. Meteor, 7(2), 145–11. https://doi.org/10.1175/1520-0469(1950)007<0145:AQSOTB2.0.CO;2
  • Baldini, L., & Gorgucci, E. (2006). Identification of the melting layer through dual-polarization radar measurements at vertical incidence. J. Atmos. Ocean. Technol, 23(6), 829–839. https://doi.org/10.1175/JTECH1884.1
  • Brandes, E. A., & Ikeda, K. (2004). Freezing-level estimation with polarimetric radar. J. Appl. Meteor, 43(11), 1541–1553. https://doi.org/10.1175/jam2155.1
  • Bringi, V. N., & Chandrasekar, V. (2001). Polarimetric Doppler weather radar: Principles and applications. Cambridge University Press.
  • Broeke, M. S. V. D., Tobin, D. M., & Kumjian, M. R. (2016). Polarimetric radar observations of precipitation type and rate from the 2–3 March 2014 winter storm in Oklahoma and Arkansas. Wea. Forecasting, 31(4), 1179–1196. https://doi.org/10.1175/waf-d-16-0011.1
  • Chen, C., Liu, L., Hu, S., Wu, Z., Wu, C., & Zhang, Y. (2020). Operational evaluation of the quantitative precipitation estimation by a CINRAD-SA dual polarization radar system. Journal of Tropical Meteorology, 26(2), 176–187. https://doi.org/10.46267/j.1006-8775.2020.016
  • Fabry, F., & Zawadzki, I. (1995). Long-term radar observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci, 52(7), 838–851. https://doi.org/10.1175/1520-0469(1995)0520838:ltroot>2.0.co;2
  • Falconi, M. T., Montopoli, M., & Marzano, F. S. (2016). Bayesian statistical analysis of ground-clutter for the relative calibration of dual polarization weather radars. European Journal of Remote Sensing, 49(1), 933–953. https://doi.org/10.5721/EuJRS20164949
  • Giangrande, S. E., Krause, J. M., & Ryzhkov, A. V. (2008). Automatic designation of the melting layer with a polarimetric prototype of the WSR-88D radar. J. Appl. Meteor. Climatol, 47(5), 1354–1364. https://doi.org/10.1175/2007JAMC1634.1
  • Gourley, J., & Calvert, C. (2003). Automated detection of the bright band using WSR-88D data. Wea. Forecasting, 18, 589–599. https://doi.org/10.1175/1520-0434(2003)018<0585:ADOTBB2.0.CO;2
  • Griffin, E. M., Schuur, T. J., & Ryzhkov, A. V. (2018). A polarimetric analysis of ice microphysical processes in snow, using quasi-vertical profiles. J. Appl. Meteor. Climatol, 57(1), 31–50. https://doi.org/10.1175/jamc-d-17-0033.1
  • Griffin, E. M., Schuur, T. J., & Ryzhkov, A. V. (2020). A polarimetric radar analysis of ice microphysical processes in melting layers of winter storms using s-band quasi-vertical profiles. J. Appl. Meteor. Climatol, 59(4), 751–767. https://doi.org/10.1175/jamc-d-19-0128.1
  • Hall, W., Rico-Ramirez, M. A., & Krämer, S. (2015). Classification and correction of the bright band using an operational C-band polarimetric radar. J. Hydrometeor, 531, 248–258. https://doi.org/10.1016/j.jhydrol.2015.06.011
  • Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., & Thépaut, J.-N. (2018). ERA5 hourly data on pressure levels from 1959 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS).
  • Huang, L., & Luo, Y. (2017). Evaluation of quantitative precipitation forecasts by TIGGE ensembles for south China during the presummer rainy season. J. Geophys. Res.: Atmos, 122(16), 8494–8516. https://doi.org/10.1002/2017jd026512
  • Hu, X., Huang, H., Xiao, H., Cui, Y., Lv, F., Zhao, L., & Ji, X. (2022). Microphysical characteristics of precipitating stratiform clouds in north China revealed by joint observations of an aircraft and a polarimetric radar. Journal of the Atmospheric Sciences, 79(11), 2799–2811. https://doi.org/10.1175/JAS-D-21-0248.1
  • Huuskonen, A., Saltikoff, E., & Holleman, I. (2014). The operational weather radar network in Europe. Bull. Amer. Meteor. Soc, 95(6), 897–907. https://doi.org/10.1175/bams-d-12-00216.1
  • Kumjian, M. R. (2013). Principles and applications of dual-polarization weather radar. part I: description of the polarimetric radar variables. J. Oper. Meteor, 1(19), 226–242. http://dx.doi.org/10.15191/nwajom.2013.0119
  • Kumjian, M. R., & Lombardo, K. A. (2017). Insights into the evolving microphysical and kinematic structure of northeastern U.S. winter storms from dual-polarization Doppler radar. Mon. Wea. Rev, 145(3), 1033–1061. https://doi.org/10.1175/mwr-d-15-0451.1
  • Kumjian, M. R., Ryzhkov, A. V., Reeves, H. D., & Schuur, T. J. (2013). A dual-polarization radar signature of hydrometeor refreezing in winter storms. J. Appl. Meteor. Climatol, 52(11), 2549–2566. https://doi.org/10.1175/jamc-d-12-0311.1
  • Lee, J. E., Jung, S. H., & Kwon, S. (2020). Characteristics of the bright band based on quasi-vertical profiles of polarimetric observations from an S-band weather radar network. Remote Sens, 12(24), 4061. https://doi.org/10.3390/rs12244061
  • Luo, Y., Xia, R., & Chan, J. C. L. (2020). Characteristics, physical mechanisms, and prediction of pre-summer rainfall over South China: research progress during 2008-2019. J Meteor Soc Japan Ser II, 98(1), 19–42. https://doi.org/10.2151/jmsj.2020-002
  • Matrosov, S. Y., Cifelli, R., White, A., & Coleman, T. (2017). Snow-level estimates using operational polarimetric weather radar measurements. J. Hydrometeor, 18(4), 1009–1018. https://doi.org/10.1175/JHM-D-16-0238.1
  • Matrosov, S. Y., Clark, K. A., & Kingsmill, D. E. (2007). A polarimetric radar approach to identify rain, melting-layer, and snow regions for applying corrections to vertical profiles of reflectivity. J. Appl. Meteor. Climatol, 46(2), 154–166. https://doi.org/10.1175/jam2508.1
  • Park, H., Ryzhkov, A. V., Zrnić, D. S., & Kim, K. E. (2009). The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24(3), 730–748. https://doi.org/10.1175/2008WAF2222205.1
  • Qiao, J., Ai, W., Hu, X., Hu, S., & Yan, W. (2021). A recognition method of hydrometeor in tropical cyclones by using the GPM dual-frequency precipitation radar. Journal of Tropical Meteorology, 27(2), 161–168. https://doi.org/10.46267/j.1006-8775.2021.015
  • Rico‐Ramirez, M. A., & Cluckie, I. D. (2007). Bright‐band detection from radar vertical reflectivity profiles. International Journal of Remote Sensing, 28(18), 4013–4025. https://doi.org/10.1080/01431160601047797
  • Romatschke, U. (2021). Melting layer detection and observation with the NCAR airborne W-Band radar. Remote Sensing, 13(9), 1660. https://doi.org/10.3390/rs13091660
  • Ryzhkov, A., Zhang, P., Reeves, H., Kumjian, M., Tschallener, T., Trömel, S., & Simmer, C. (2016). Quasi-vertical profiles—a new way to look at polarimetric radar data. J. Atmos. Ocean. Technol, 33(3), 551–562. https://doi.org/10.1175/JTECH-D-15-0020.1
  • Ryzhkov, A. V., & Zrnic, D. S. (2019). Radar polarimetry for weather observations. Springer.
  • Sánchez-Diezma, R., Zawadzki, I., & Sempere-Torres, D. (2000). Identification of the bright band through the analysis of volumetric radar data. J. Geophys. Res.: Atmos, 105(D2), 2225–2236. https://doi.org/10.1029/1999jd900310
  • Sanchez-Rivas, D., & Rico-Ramirez, M. A. (2021). Detection of the melting level with polarimetric weather radar. Atmos. Meas. Tech, 14(4), 2873–2890. https://doi.org/10.5194/amt-14-2873-2021
  • Schuur, T. J., Ryzhkov, A. V., Forsyth, D. E., Zhang, P., & Reeves, H. D. (2014). Precipitation observations with NSSL’s X-band polarimetric radar during the SNOW-V10 campaign. Pure and Applied Geophysics, 171(1), 95–112. https://doi.org/10.1007/s00024-012-0569-2
  • Shusse, Y., Takahashi, N., Nakagawa, K., Satoh, S., & Iguchi, T. (2011). Polarimetric radar observation of the melting layer in a convective rainfall system during the rainy season over the East China Sea. J. Appl. Meteor. Climatol, 50(2), 354–367. https://doi.org/10.1175/2010jamc2469.1
  • Tang, L., Zhang, J., Qi, Y., Langston, C., & Howard, K. W. (2013). Non-standard blockage mitigation for national radar QPE products. 36th conference on radar meteorology, Colorado. American Meteorological Society.
  • Trömel, S., Ryzhkov, A. V., Hickman, B., Mühlbauer, K., & Simmer, C. (2019). Polarimetric radar variables in the layers of melting and dendritic growth at X band—implications for a nowcasting strategy in stratiform rain. J. Appl. Meteor. Climatol, 58(11), 2497–2522. https://doi.org/10.1175/jamc-d-19-0056.1
  • Wang, H., Kong, F., Jung, Y., Wu, N., & Yin, J. (2018). Quality control of S-band polarimetric radar measurements for data assimilation. J. Appl. Meteorol. Sci, 29(5), 546–558. in Chinese with an English abstract. https://doi.org/10.11898/1001-7313.20180504
  • Wang, H., Kong, F., Wu, N., Lan, H., & Yin, J. (2019). An investigation into microphysical structure of a squall line in South China observed with a polarimetric radar and a disdrometer. Atmospheric Research, 226, 171–180. https://doi.org/10.1016/j.atmosres.2019.04.009
  • Wang, D., Liu, L., Zhong, L., Wei, Y., & Wang, X. (2012). Analysis of the characters of melting layer of cloud radar data and its identification. Meteor. Mon.(6), 74–83. http://dx.doi.org/10.7519/j.1000-0526.2012.6.009
  • Wang, H., Wan, Q., Yin, J., & Ding, W. (2016). Application of the dual-polarization radar data in numerical modeling studies: Construction of the simulator. Acta Meteorologica Sinica, 74(2), 229–243. in Chinese with an English abstract. https://doi.org/10.11676/qxxb2016.017
  • Willis, P. T., & Heymsfield, A. J. (1989). Structure of the melting layer in mesoscale convective system stratiform precipitation J. Atmos. Sci, 46(13), 2008–2025. https://doi.org/10.1175/1520-0469(1989)046<2008:SOTMLI>2.0.CO;2
  • Wolfensberger, D., Scipion, D., & Berne, A. (2016). Detection and characterization of the melting layer based on polarimetric radar scans. Quart. J. Roy. Meteor. Soc, 142(S1), 108–124. https://doi.org/10.1002/qj.2672
  • Wu, N., Ding, X., Wen, Z., Chen, G., Meng, Z., Lin, L., & Min, J. (2020). Contrasting frontal and warm-sector heavy rainfalls over South China during the early-summer rainy season. Atmos. Res, 235, 104693. https://doi.org/10.1016/j.atmosres.2019.104693
  • Xiao, Y., Liu, L., Li, Z., & Wang, H. (2010). Automatic recognition and removal of the bright band using radar reflectivity data. Plateau Meteor, 29(1), 197–205. http://www.gyqx.ac.cn/CN/Y2010/V29/I1/197#2
  • Yang, Z., Xie, Y., Xiang, Y., & Zhou, S. (2019). Analysis on dual polarization radar observations of a heavy snowstorm event in Anhui in the beginning of January 2018. Torrential Rain and Disasters, 38(1), 31–40. in Chinese with an English abstract. https://doi.org/10.3969/j.1004-9045.2019.01.004
  • Yao, X., Wei, M., Du, A., & Lu, M. (2016). The detection sensitivity analysis of dual polarization radar parameters for melting layer. Science Technology and Engineering, 16(21), 150–156. http://www.stae.com.cn/jsygc/article/abstract/1601755?st=search