2,619
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Remote sensing techniques for water management and climate change monitoring in drought areas: case studies in Egypt and Tunisia

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, & show all
Article: 2157335 | Received 09 Jun 2022, Accepted 06 Dec 2022, Published online: 06 Jan 2023

References

  • Abdel-Kader, F. H. (2019). Assessment and monitoring of land degradation in the northwest coast region, Egypt using Earth observations data. Egyptian Journal of Remote Sensing and Space Science, 22(2), 2. https://doi.org/10.1016/j.ejrs.2018.02.001
  • Ahlström, A., Raupach, M. R., Schurgers, G., Smith, B., Arneth, A., Jung, M., Reichstein, M., Canadell, J. G., Friedlingstein, P., Jain, A. K., Kato, E., Poulter, B., Sitch, S., Stocker, B. D., Viovy, N., Wang, Y. P., Wiltshire, A., Zaehle, S., & Zeng, N. (2015). The dominant role of semi-arid ecosystems in the trend and variability of the land CO 2 sink. Science, 348(6237), 6237. https://doi.org/10.1126/science.aaa1668
  • Akinyemi, F. O. (2021). Vegetation trends, drought severity and land use‐land cover change during the growing season in semi‐arid contexts. Remote Sensing, 13(5), 836. https://doi.org/10.3390/rs13050836
  • Allam, M., Bakr, N., & Elbably, W. (2019). Multi-Temporal assessment of land use/land cover change in arid region based on landsat satellite imagery: Case Study in Fayoum Region, Egypt. Remote Sensing Applications: Society and Environment, 14. https://doi.org/10.1016/j.rsase.2019.02.002
  • Anna, B., Mattia, F., Satalino, G., & Davidson, M. W. J. (2011). Dense temporal series of C- and L-band SAR data for soil moisture retrieval over agricultural crops. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(2). https://doi.org/10.1109/JSTARS.2010.2052916
  • Attema, E. P. W., & Fawwaz, T. U. (1978). Vegetation modeled as a water cloud. Radio Science, 13(2), 2. https://doi.org/10.1029/RS013i002p00357
  • Baghdadi, N., Gaultier, S., & King, C. (2002). Retrieving surface roughness and soil moisture from synthetic aperture radar (SAR) data using neural networks. Canadian Journal of Remote Sensing, 28(5), 701–23. https://doi.org/10.5589/m02-066
  • Bastiaanssen, W. G. M., Noordman, E. J. M., Pelgrum, H., Davids, G., Thoreson, B. P., & Allen, R. G. (2005). SEBAL Model with remotely sensed dta to improve water-resources management under actual field conditions. Journal of Irrigation and Drainage Engineering, 131(1), 1. https://doi.org/10.1061/(asce)0733-9437
  • Bhaskar, R. N. (2014). Comparative evaluation of different potential evapotranspiration estimation approaches. International Journal of Research in Engineering and Technology, 03(6), 544–552. https://doi.org/10.15623/ijret.2014.0306102
  • Boulet, G., Delogu, E., Chebbi, W., Rafi, Z., Le Dantec, V., Mallick, K., Mougenot, B., Olioso, A., Zribi, M., Lili-Chabaane, Z., Er-Raki, S., Merlin O. (2019). Evapotranspiration and evaporation/transpiration retrieval using dual-source surface energy balance models integrating VIS/NIR/TIR data with satellite surface soil moisture information. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42. https://doi.org/10.5194/isprs-archives-XLII-3-W6-9-2019.
  • Chen, Y., Dengsheng, L., Moran, E., Batistella, M., Vieira Dutra, L., Del Arco Sanches, I., Bicudo da Silva, R. F., Huang, J., José Barreto Luiz, A., & Falcão de Oliveira, M. A. (2018). Mapping croplands, cropping patterns, and crop types using MODIS time-series data. International Journal of Applied Earth Observation and Geoinformation, 69. https://doi.org/10.1016/j.jag.2018.03.005
  • de Jong, R., de Bruin, S., de Wit, A., Schaepman, M. E., & Dent, D. L. (2011). Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sensing of Environment, 115(2),692–702. Elsevier. https://doi.org/10.1016/J.RSE.2010.10.011
  • Del Frate, F., Ferrazzoli, P., Schiavon, G., Ahlström, A., Raupach, M. R., Schurgers, G., Smith, B., Arneth, A., Jung, M., Reichstein, M., Canadell, J. G., Friedlingstein, P., Jain, A. K., Kato, E., Poulter, B., Sitch, S., Stocker, B. D., Viovy, N., Wang, Y. P., … Zeng, N. (2003). Retrieving Soil moisture and agricultural variables by microwave radiometry using neural networks. Remote Sensing of Environment, 84(2), 174–183. https://doi.org/10.1016/S0034-4257(02)00105-0
  • Dobson, M. C., Ulaby, F. T., Hallikainen, M. T., & El-Rayes, M. A. (1985). Microwave dielectric behavior of wet soil-Part II: Dielectric mixing models. IEEE Transactions on Geoscience and Remote SensingGE-, 23, 1. https://doi.org/10.1109/TGRS.1985.289498
  • Ekundayo, O. Y., Okogbue, E. C., Akinluyi, F. O., Kalumba, A. M., & Orimoloye, I. R. (2021). Spatiotemporal drought assessment using vegetation health index and standardized precipitation index over Sudano-Sahelian region of Nigeria. African Geographical Review, 40(4), 4. https://doi.org/10.1080/19376812.2020.1841658
  • El-Shirbeny, Alsersy, A., Saleh, N. H., Abu-Taleb, K. A., & El-Shirbeny, M. A. (2015). Changes in irrigation water consumption in the Nile Delta of Egypt assessed by remote sensing. Arabian Journal of Geosciences, 8(12), 12. https://doi.org/10.1007/s12517-015-2005-2
  • Fayech, D., & Tarhouni, J. (2021). Climate variability and its effect on normalized difference vegetation index (NDVI) using remote sensing in semi-arid Area. Modeling Earth Systems and Environment, 7(3), 3. https://doi.org/10.1007/s40808-020-00896-6
  • Fishar, M. R. (2018). Nile Delta (Egypt). In The Wetland Book II: Distribution, Description, and Conservation The Wetland Book. Springer (Vol. 2, pp. 1251–1260). Dordrecht: Springer Nature. https://doi.org/10.1007/978-94-007-4001-3_216
  • Fung, A. K. (1994. . Microwave Scattering and Emission Models and Their Applications (Artech House Publishers) 0890065233 .
  • Gao, Q., Zribi, M., Jose Escorihuela, M., & Baghdadi, N. (2017). Synergetic use of Sentinel-1 and Sentinel-2 data for soil moisture mapping at 100 m resolution. Sensors (Switzerland), 17(9), 1966. https://doi.org/10.3390/s17091966
  • Gidey, E., Dikinya, O., Sebego, R., Segosebe, E., & Zenebe, A. (2018). Modeling the spatio-temporal meteorological drought characteristics using the standardized precipitation index (SPI) in Raya and its environs, Northern Ethiopia. Earth Systems and Environment, 2(2). https://doi.org/10.1007/s41748-018-0057-7
  • Giorgi, F., & Lionello, P. (2008). Climate change projections for the Mediterranean region. Global and Planetary Change, 63(2–3), 2–3. https://doi.org/10.1016/j.gloplacha.2007.09.005
  • Hachani, A., Ouessar, M., Paloscia, S., Santi, E., & Pettinato, S. (2019). Soil moisture retrieval from Sentinel-1 acquisitions in an arid environment in Tunisia: Application of artificial neural networks techniques. International Journal of Remote Sensing, 40(24), 24. https://doi.org/10.1080/01431161.2019.1629503
  • Hamza, W. 2006. The Nile Estuary. Handbook of Environmental Chemistry, Volume 5, Water Pollution 5 (PART H). https://doi.org/10.1007/698-5-025
  • Hesham, Y.H., Khalil, A.A., M. El-Sayed, M. (2015). Atlas for Drought Monitoring over Egypt 978-977-302-445-1 . https://www.academia.edu/17344925/ATLAS_FOR_DROUGHT_MONITORING_OVER_EGYPT
  • Hornáček, M., Wagner, W., Sabel, D., Linh Truong, H., Snoeij, P., Hahmann, T., Diedrich, E., & Doubková, M. (2012). Potential for high resolution systematic global surface soil moisture retrieval via change detection using Sentinel-1. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(4), 4. https://doi.org/10.1109/JSTARS.2012.2190136
  • Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1–2), 1–2. https://doi.org/10.1016/S0034-4257(02)00096-2
  • IPCC. (2019). Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse gas fluxes in Terrestrial Ecosystems. IPCC. https://www.ipcc.ch/site/assets/uploads/2019/11/SRCCL-Full-Report-Compiled-191128.pdf.
  • Jaafar, H. H., & Ahmad, F. A. (2015). Crop yield prediction from remotely sensed vegetation indices and primary productivity in arid and semi-arid lands. International Journal of Remote Sensing, 36(18), 18. https://doi.org/10.1080/01431161.2015.1084434
  • Javzandulam, T., Tateishi, R., & Sanjaa, T. (2005). Analysis of vegetation indices for monitoring vegetation degradation in semi-arid and arid areas of Mongolia. International Journal of Environmental Studies, 62(2), 2. https://doi.org/10.1080/00207230500034123
  • JICA, Yachiyo Engineering Co., Kaihatsu Management Consulting, and Corporation Ingérosec. 2015. “Project on Regional Development Planning of the Southern Region in the Republic of Tunisia Final Report Project on Regional Development Planning of the Southern Region in the Republic of Tunisia Final Report”, no. Mdici. https://openjicareport.jica.go.jp/pdf/12246732.pdf.
  • John, R., Chen, J., Nan, L., Guo, K., Liang, C., Wei, Y., Noormets, A., Keping, M., & Han, X. (2008). Predicting plant diversity based on remote sensing products in the semi-arid region of inner Mongolia. Remote Sensing of Environment, 112(5), 2018–2032. https://doi.org/10.1016/j.rse.2007.09.013
  • Justice, C. O., Vermote, E., Townshend, J. R. G., Defries, R., Roy, D. P., Hall, D. K., Salomonson, V. V., Privette, J. L., Riggs, G., Strahler, A., Lucht, W., Myneni, R. B., Knyazikhin, Y., Running, S. W., Nemani, R. R., Wan, Z., Huete, A. R., van Leeuwen, W., Wolfe, R. E., … Barnsley, M. J. (1998). The moderate resolution imaging spectroradiometer (MODIS): Land remote sensing for global change research. IEEE Transactions on Geoscience and Remote Sensing, 36(4), 4. https://doi.org/10.1109/36.701075
  • Khan, M. S., Baik, J., & Choi, M. (2020). Inter-Comparison of evapotranspiration datasets over heterogeneous landscapes across Australia. Advances in Space Research, 66(3), 3. https://doi.org/10.1016/j.asr.2020.04.037
  • Kogan, F. N. (1995). Application of vegetation index and brightness temperature for drought detection. Advances in Space Research, 15(11), 91–100. https://doi.org/10.1016/0273-1177(95)00079-T
  • Kogan, F. N. (2001). Operational space technology for global vegetation assessment. Bulletin of the American Meteorological Society, 82(9), 1949–1964. https://doi.org/10.1175/1520-0477(2001)082<1949:OSTFGV>2.3.CO;2
  • Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World Map of the Köppen-Geiger Climate Classification Updated. Meteorologische Zeitschrift, 15(3), 3. https://doi.org/10.1127/0941–2948/2006/0130
  • Lal, R. (2004 Carbon Sequestration in Dryland Ecosystems Environmental Management). . In (Vol. 33 4 , pp. 528–544). . http://link.springer.com/10.1007/s00267-003-9110-9 doi:10.1007/s00267-003-9110-9
  • Lionello, P., & Scarascia, L. (2018). The relation between climate change in the Mediterranean region and global warming. Regional Environmental Change, 18(5), 5. https://doi.org/10.1007/s10113-018-1290-1
  • Mckee, T. B. T. B., Doesken, N. J. N. J., Kleist, J., Doesken, N. J. N. J., Kleist, J., Mckee, T. B. T. B., Nolan J. N.J, D., & Kleist, J. 1993. “The relationship of drought frequency and duration to time scales. Eighth Conference on Applied Climatology. American Meteorological Society, Boston”. Eighth Conference on Applied Climatology, no. 1.
  • MedECC. (2020). Climate and environmental change in the Mediterranean basin – current situation and risks for the future. First Mediterranean assessment report. Climate and Environmental Change in the Mediterranean Basin – Current Situation and Risks for the Future (pp.632). ISBN 978-2-9577416-0-1; doi: 10.5281/zenodo.4768833
  • Mingzhu, H., Kimball, J. S., Yonghong, Y., Running, S. W., Guan, K., Moreno, A., Xiaocui, W., & Maneta, M. (2019). Satellite data-driven modeling of field scale evapotranspiration in croplands using the MOD16 algorithm framework. Remote Sensing of Environment, 230. https://doi.org/10.1016/j.rse.2019.05.020
  • Ning, Z., Hong, Y., Qin, Q., & Liu, L. (2013). VSDI: A visible and shortwave infrared drought index for monitoring soil and vegetation moisture based on optical remote sensing. International Journal of Remote Sensing, 34, 13. https://doi.org/10.1080/01431161.2013.779046
  • Olmos-Trujillo, E., González-Trinidad, J., Júnez-Ferreira, H., Pacheco-Guerrero, A., Bautista-Capetillo, C., Avila-Sandoval, C., & Galván-Tejada, E. (2020). Spatio-temporal response of vegetation indices to rainfall and temperature in a semiarid region. Sustainability (Switzerland), 12(5). https://doi.org/10.3390/su12051939
  • Paloscia, S., Pettinato, S., Santi, E., Notarnicola, C., Pasolli, L., & Reppucci, A. (2013). Soil moisture mapping using Sentinel-1 images: algorithm and preliminary validation. Remote Sensing of Environment, 134. https://doi.org/10.1016/j.rse.2013.02.027
  • Qiaozhen, M., Zhao, M., & Running, S. W. (2011). Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sensing of Environment, 115, 8. https://doi.org/10.1016/j.rse.2011.02.019
  • Rodríguez-Fernández, N. J., Aires, F., Richaume, P., Kerr, Y. H., Prigent, C., Kolassa, J., Cabot, F., Jiménez, C., Mahmoodi, A., & Drusch, M. (2015). Soil moisture retrieval using neural networks: Application to SMOS. IEEE Transactions on Geoscience and Remote Sensing, 53(11), 5991–6007. https://doi.org/10.1109/TGRS.2015.2430845
  • Roy, D. P., Wulder, M. A., Loveland, T. R., Woodcock, C. E., Allen, R. G., Anderson, M. C., Helder, D., Irons, J. R., Johnson, D. M., Kennedy, R., Scambos, T. A., Schaaf, C. B., Schott, J. R., Sheng, Y., Vermote, E. F., Belward, A. S., Bindschadler, R., Cohen, W. B., Gao, F., … Zhu, Z. (2014). Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145, 154–172. https://doi.org/10.1016/j.rse.2014.02.001
  • Ryan, J. G., & Spencer, D. C. (2001). Future challenges and opportunities for agricultural development in the semi-arid tropics. Patanchura, 502, 324 http://oar.icrisat.org/id/eprint/1107.
  • Santi, E. (2016). Neural networks applications for the remote sensing of hydrological parameters. Artificial Neural Networks - Models and Applications. https://doi.org/10.5772/63165
  • Santi, E., Paloscia, S., Pettinato, S., Brocca, L., & Ciabatta, L. (2016). Robust assessment of an operational algorithm for the retrieval of soil moisture from AMSR-E data in central Italy. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(6), 6. https://doi.org/10.1109/JSTARS.2016.2575361
  • Santi, E., Paloscia, S., Pettinato, S., & Fontanelli, G. (2016). Application of artificial neural networks for the soil moisture retrieval from active and passive microwave spaceborne sensors. International Journal of Applied Earth Observation and Geoinformation, 48. https://doi.org/10.1016/j.jag.2015.08.002
  • Santi, E., Pettinato, S., Paloscia, S., Pampaloni, P., MacElloni, G., & Brogioni, M. (2012). An algorithm for generating soil moisture and snow depth maps from microwave spaceborne radiometers: HydroAlgo. Hydrology and Earth System Sciences, 16(10), 10. https://doi.org/10.5194/hess-16-3659-2012
  • Senay, G.B., Velpuri, N.M., Bohms, S., Budde, M., Young, C., Rowland, J., Verdin, J.P. (2015). Drought Monitoring and Assessment: Remote Sensing and Modeling Approaches for the Famine Early Warning Systems Network. In Shroder, John F., Di Baldassarre, Giuliano, Paron, Paolo (Eds.), Hydro-Meteorological Hazards, Risks and Disasters (Elsevier) 233–262. ISBN: 9780123948465. https://doi.org/10.1016/B978-0-12-394846-5.00009-6
  • Sommer, R., Ryan, J., Masri, S., Singh, M., & Diekmann, J. (2011). Effect of shallow tillage, moldboard plowing, straw management and compost addition on soil organic matter and nitrogen in a dryland barley/wheat-vetch rotation. Soil and Tillage Research, 115–116. https://doi.org/10.1016/j.still.2011.06.003
  • Sun, D., & Kafatos, M. (2007). Note on the NDVI-LST relationship and the use of temperature-related drought Indices over North America. Geophysical Research Letters, 34(24), 24. https://doi.org/10.1029/2007GL031485
  • Suzuki. 2020. “Contract signed for new copernicus ROSE-L Mission.” https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Contract_signed_for_new_Copernicus_ROSE-L_mission
  • Tarpanelli, A., Santi, E., Tourian, M. J., Filippucci, P., Amarnath, G., & Brocca, L. (2019). Daily river discharge estimates by merging satellite optical sensors and radar altimetry through artificial neural network. IEEE Transactions on Geoscience and Remote Sensing, 57(1), 1. https://doi.org/10.1109/TGRS.2018.2854625
  • Tramblay, Y., Koutroulis, A., Samaniego, L., Vicente-Serrano, S. M., Volaire, F., Boone, A., Le Page, M., Llasat, M.C., Albergel, C., Burak, S., Cailleret, M., Cindrić Kalin, K., Davi, H., Dupuy, J., Greve, P., Grillakis, M. et al. (2020). Challenges for drought assessment in the mediterranean region under future climate scenarios. Earth-Science Reviews, https://doi.org/10.1016/j.earscirev.2020.103348
  • Wardlow, B. D., & Egbert, S. L. (2010). A Comparison of MODIS 250-m EVI and NDVI data for crop mapping: A case study for Southwest Kansas. International Journal of Remote Sensing, 31(3), 3. https://doi.org/10.1080/01431160902897858
  • Xie, C., Zhang, X., Zhuang, L., Zhu, R., & Guo, J. (2022). . In Scientific Reports, Vol.). Nature Publishing Group UK. . https://doi.org/10.1038/s41598-022-06363-9.
  • Yuan, L., Yaoming, M., Chen, X., Wang, Y., & Zhaoguo, L. (2021). An enhanced MOD16 evapotranspiration model for the Tibetan Plateau during the unfrozen season. Journal of Geophysical Research: Atmospheres, 126(7). https://doi.org/10.1029/2020JD032787
  • Zhu, X., Liu, Y., Kun, X., & Pan, Y. (2021). Effects of drought on vegetation productivity of farmland ecosystems in the drylands of northern China. Remote Sensing, 13(6). https://doi.org/10.3390/rs13061179
  • Zribi, M., Baghdadi, N., Bousbih, S., El-Hajj, M., & Gao, Q. (2019). Surface moisture and irrigation mapping at agricultural field scale using the synergy Sentinel-1/Sentinel-2 Data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42. https://doi.org/10.5194/isprs-archives-XLII-3-W6-357-2019