1,217
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of common reed (Phragmites australis) bed changes in the context of management using earth observation and automatic threshold

ORCID Icon, , &
Article: 2161070 | Received 19 Aug 2022, Accepted 16 Dec 2022, Published online: 05 Jan 2023

References

  • Ailstock, M.S., Norman, C.M., & Bushmann, P.J. (2001). Common reed phragmites australis: Control and effects upon biodiversity in freshwater nontidal wetlands. Restoration Ecology, 9(1), 49–15. https://doi.org/10.1046/j.1526-100x.2001.009001049.x
  • Amani, M., Salehi, B., Mahdavi, S., & Brisco, B. (2018). Spectral analysis of wetlands using multi-source optical satellite imagery. Isprs Journal of Photogrammetry and Remote Sensing, 114, 119–136. https://doi.org/10.1016/j.isprsjprs.2018.07.005
  • Anderson, C. J., Heins, D., Pelletier, K. C., Bohnen, J. L., & Knight, J. F. Mapping invasive phragmites australis using unoccupied aircraft system imagery, canopy height models, and synthetic aperture radar. (2021). Remote Sensing, 13(16), 3303. Article 16. https://doi.org/10.3390/rs13163303
  • Asaeda, T., Rajapakse, L., Manatunge, J., & Sahara, N. (2006). The effect of summer harvesting of phragmites australis on growth characteristics and rhizome resource storage. Hydrobiologia, 553(1), 327–335. https://doi.org/10.1007/s10750-005-1157-6
  • Bhatnagar, S., Gill, L., Regan, S., Naughton, O., Johnston, P., Waldren, S., & Ghosh, B. (2020). Mapping vegetation communities inside wetlands using sentinel-2 imagery in Ireland. International Journal of Applied Earth Observation and Geoinformation, 88, 102083. https://doi.org/10.1016/j.jag.2020.102083
  • Bojórquez, A., Martínez-Yrízar, A., Búrquez, A., Jaramillo, V. J., Mora, F., Balvanera, P., & Álvarez-Yépiz, J. C. (2020). Improving the accuracy of aboveground biomass estimations in secondary tropical dry forests. Forest Ecology and Management, 474, 118384. https://doi.org/10.1016/j.foreco.2020.118384
  • Bollas, N., Kokinou, E., & Polychronos, V. (2021). Comparison of sentinel-2 and UAV multispectral data for use in precision agriculture: An application from Northern Greece. Drones, 5(2), 35. https://doi.org/10.3390/drones5020035
  • Bresciani, M., Sotgia, C., Fila, G. L., Musanti, M., & Bolpagni, R. (2011). Assessing common reed bed health and management strategies in Lake Garda (Italy) by means of leaf area index measurements. Italian Journal of Remote Sensing, 43(2), 9–22. https://doi.org/10.5721/ItJRS20114321
  • Bresciani, M., Stroppiana, D., Fila, G., Montagna, M., & Giardino, C. (2009). Monitoring reed vegetation in environmentally sensitive areas in Italy. Italian Journal of Remote Sensing, 41(2), 125–137. https://doi.org/10.5721/ItJRS20094129
  • Carabias, D.M. (2012). Analysis of image thresholding methods for their application to augmented reality environments. Universidad Complutense De Madrid.
  • Datta, A., Maharaj, S., Prabhu, G. N., Bhowmik, D., Marino, A., Akbari, V., Rupavatharam, S., Sujeetha, J. A. R., Anantrao, G. G., Poduvattil, V. K., Kumar, S., & Kleczkowski, A. (2021). Monitoring the spread of water hyacinth (Pontederia crassipes): Challenges and future developments. Frontiers in Ecology and Evolution, 9, 1–8. https://doi.org/10.3389/fevo.2021.631338
  • De Keukelaere, L., Sterckx, S., Adriaensen, S., Knaeps, E., Reusen, I., Giardino, C., Bresciani, M., Hunter, P., Neil, C., Van der Zande, D., & Vaiciute, D. (2018). Atmospheric correction of Landsat-8/OLI and sentinel-2/MSI data using iCOR algorithm: Validation for coastal and inland waters. European Journal of Remote Sensing, 51(1), 525–542. https://doi.org/10.1080/22797254.2018.1457937
  • Derr, J. F. (2008). Common reed (Phragmites australis) response to mowing and herbicide application. Invasive Plant Science and Management, 1(1), 12–16. https://doi.org/10.1614/IPSM-07-001.1
  • Duke, J. A. (1983). Handbook of energy crops. Centre for New Crops and Plant Products, Purdue University.
  • Egan, J. P. (1975). Signal detection theory and ROC-analysis. Academic press.
  • Eller, F., Skálová, H., Caplan, J. S., Bhattarai, G. P., Burger, M. K., Cronin, J. T., Guo, W. -Y., Guo, X., Hazelton, E. L. G., Kettenring, K. M., Lambertini, C., McCormick, M. K., Meyerson, L. A., Mozdzer, T. J., Pyšek, P., Sorrell, B. K., Whigham, D. F., & Brix, H. (2017). Cosmopolitan species as models for ecophysiological responses to global change: The common reed phragmites australis. Frontiers in plant science, 8, 1833. https://doi.org/10.3389/fpls.2017.01833
  • Fogli, S., Brancaleoni, L., Lambertini, C., & Gerdol, R. (2014). Mowing regime has different effects on reed stands in relation to habitat. Journal of Environmental Management, 134, 56–62. https://doi.org/10.1016/j.jenvman.2014.01.001
  • Gao, B. (1996). NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257–266. https://doi.org/10.1016/S0034-4257(96)00067-3
  • Gao, B. -C., & Li, R. -R. (2012). Removal of thin cirrus scattering effects for remote sensing of ocean color from space. IEEE Geoscience and Remote Sensing Letters, 9(5), 972–976. https://doi.org/10.1109/LGRS.2012.2187876
  • Güsewell, S., Buttler, A., & Klötzli, F. (1998). Short-term and long-term effects of mowing on the vegetation of two calcareous fens. Journal of Vegetation Science, 9(6), 861–872. https://doi.org/10.2307/3237051
  • Güsewell, S., Le Nédic, C., & Buttler, A. (2000). Dynamics of common reed (Phragmites australis trin.) in Swiss fens with different management. Wetlands Ecology and Management, 8(6), 375–389. https://doi.org/10.1023/a:1026553700571
  • Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295–309. https://doi.org/10.1016/0034-4257(88)90106-X
  • Jabłońska, E., Winkowska, M., Wiśniewska, M., Geurts, J., Zak, D., & Kotowski, W. (2021). Impact of vegetation harvesting on nutrient removal and plant biomass quality in wetland buffer zones. Hydrobiologia, 848(14), 3273–3289. https://doi.org/10.1007/s10750-020-04256-4
  • Jiang, W., Ni, Y., Pang, Z., He, G., Fu, J., Lu, J., Yang, K., Long, T., & Lei, T. (2020). A new index for identifying water body from sentinel-2 satellite remote sensing imagery. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-3–2020, 33–38. https://doi.org/10.5194/isprs-annals-V-3-2020-33-2020
  • Joyce, K. E., Duce, S., Leahy, S. M., Leon, J., & Maier, S. W. (2019). Principles and practice of acquiring drone-based image data in marine environments. Marine & Freshwater Research, 70(7), 952. https://doi.org/10.1071/MF17380
  • Kapur J, Sahoo P and Wong A. (1985). A new method for gray-level picture thresholding using the entropy of the histogram. Computer Vision, Graphics, and Image Processing, 29(3), 273–285. 10.1016/0734-189X(85)90125-2
  • Kattenborn, T., Lopatin, J., Förster, M., Braun, A. C., & Fassnacht, F. E. (2019). UAV data as alternative to field sampling to map woody invasive species based on combined sentinel-1 and sentinel-2 data. Remote Sensing of Environment, 227, 61–73. https://doi.org/10.1016/j.rse.2019.03.025
  • Lawley, V., Lewis, M., Clarke, K., & Ostendorf, B. (2016). Site-based and remote sensing methods for monitoring indicators of vegetation condition: An Australian review. Ecological indicators, 60, 1273–1283. https://doi.org/10.1016/j.ecolind.2015.03.021
  • Lu, L., Luo, J., Xin, Y., Duan, H., Sun, Z., Qiu, Y., & Xiao, Q. (2022). How can UAV contribute in satellite-based phragmites australis aboveground biomass estimating? International Journal of Applied Earth Observation and Geoinformation, 114, 103024. https://doi.org/10.1016/j.jag.2022.103024
  • Luo, S., Wang, C., Xi, X., Pan, F., Qian, M., Peng, D., Nie, S., Qin, H., & Lin, Y. (2017). Retrieving aboveground biomass of wetland phragmites australis (common reed) using a combination of airborne discrete-return LiDAR and hyperspectral data. International Journal of Applied Earth Observation and Geoinformation, 58, 107–117. https://doi.org/10.1016/j.jag.2017.01.016
  • Lu Yewei, L. Q. (2015). A method of coastal aquaculture area automatic extraction with high spatial resolution images. Remote Sensing Technology and Application, 30(3), 486–494. https://doi.org/10.11873/j.issn.1004-0323.2015.3.0486
  • Mandrekar, J. N. (2010). Receiver operating characteristic curve in diagnostic test assessment. Journal of Thoracic Oncology, 5(9), 1315–1316. https://doi.org/10.1097/JTO.0b013e3181ec173d
  • Martins, V. S., Barbosa, C. C. F., De Carvalho, L. A. S., Jorge, D. S. F., Lobo, F. D. L., & Novo, E. M. L. D. M. Assessment of atmospheric correction methods for sentinel-2 MSI images applied to Amazon floodplain lakes. (2017). Remote Sensing, 9(4), 322. Article 4. https://doi.org/10.3390/rs9040322
  • McFeeters, S. K. (2013). Using the normalized difference water index (NDWI) within a geographic information system to detect swimming pools for mosquito abatement: A practical approach. Remote Sensing, 5(7), 3544–3561. https://doi.org/10.3390/rs5073544
  • Meneses, N. C., Baier, S., Reidelstürz, P., Geist, J., & Schneider, T. (2018). Modelling heights of sparse aquatic reed (Phragmites australis) using structure from motion point clouds derived from rotary- and fixed-wing unmanned aerial vehicle (UAV) data. Limnologica, 72, 10–21. https://doi.org/10.1016/j.limno.2018.07.001
  • OpenDroneMap. (2020). Authors ODM - a command line toolkit to generate maps, point clouds, 3D models and DEMs from drone, balloon or kite images. OpenDroneMap/ODM GitHub Page 2020; https://github.com/OpenDroneMap/ODM
  • Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62–66. https://doi.org/10.1109/tsmc.1979.4310076
  • Oyama, Y., Matsushita, B., & Fukushima, T. (2015). Distinguishing surface cyanobacterial blooms and aquatic macrophytes using Landsat/TM and ETM+ shortwave infrared bands. Remote Sensing of Environment, 157, 35–47. https://doi.org/10.1016/j.rse.2014.04.031
  • Picture Thresholding Using an Iterative Selection Method. IEEE Trans. Syst., Man, Cybern., 8(8), 630–632. 10.1109/TSMC.1978.4310039
  • Pinardi, M., Bresciani, M., Villa, P., Cazzaniga, I., Laini, A., Tóth, V., Fadel, A., Austoni, M., Lami, A., & Giardino, C. (2018). Spatial and temporal dynamics of primary producers in shallow lakes as seen from space: Intra-annual observations from sentinel-2A. Limnologica, 72, 32–43. https://doi.org/10.1016/j.limno.2018.08.002
  • Powell, S. J., Jakeman, A., & Croke, B. (2014). Can NDVI response indicate the effective flood extent in macrophyte dominated floodplain wetlands? Ecological indicators, 45, 486–493. https://doi.org/10.1016/j.ecolind.2014.05.009
  • QGIS.org, 2022. (2022). https://www.qgis.org/en/site/
  • Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., & Sorooshian, S. (1994). A modified soil adjusted vegetation index. Remote Sensing of Environment, 48(2), 119–126. https://doi.org/10.1016/0034-4257(94)90134-1
  • Qin, Q., Xu, D., Hou, L., Shen, B., & Xin, X. (2021). Comparing vegetation indices from sentinel-2 and Landsat 8 under different vegetation gradients based on a controlled grazing experiment. Ecological indicators, 133, 108363. https://doi.org/10.1016/j.ecolind.2021.108363
  • Richter, R., Wang, X., Bachmann, M., & Schläpfer, D. (2011). Correction of cirrus effects in sentinel-2 type of imagery. International Journal of Remote Sensing, 32(10), 2931–2941. https://doi.org/10.1080/01431161.2010.520346
  • Rondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55(2), 95–107. https://doi.org/10.1016/0034-4257(95)00186-7
  • Rouse, W., & Haas, R. H. (1973). Monitoring vegetation systems in the great plains with ERTS. Third Earth Resources Technology Satellite-1 Symposium, Goddard Space Flight Center at Washington, DC. 1, 309–317.
  • Sakuno, Y., & Kunii, H. (2013). Estimation of growth area of aquatic macrophytes expanding spontaneously in Lake Shinji using ASTER data. International Journal of Geosciences, 4(06), 1–5. https://doi.org/10.4236/ijg.2013.46A1001
  • Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J. -Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., & Cardona, A. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods, 9(7), 676–682. https://doi.org/10.1038/nmeth.2019
  • Schläpfer, D., & Richter, R. (2014). Evaluation of brefcor BRDF effects correction for HYSPEX, CASI, and APEX imaging spectroscopy data. 2014 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 1–4. https://doi.org/10.1109/WHISPERS.2014.8077488
  • Sezgin, M., & Sankur, B. (2004). Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging, 13(1), 146–165. https://doi.org/10.1117/1.1631315
  • Silva, T. S. F., Costa, M. P. F., Melack, J. M., & Novo, E. M. L. M. (2008). Remote sensing of aquatic vegetation: Theory and applications. Environmental Monitoring and Assessment, 140(1), 131–145. https://doi.org/10.1007/s10661-007-9855-3
  • Singh, G., Reynolds, C., Byrne, M., & Rosman, B. (2020). A remote sensing method to monitor water, aquatic vegetation, and invasive water hyacinth at national extents. Remote Sensing, 12(24), 4021. https://doi.org/10.3390/rs12244021
  • Sinkevičienė, D. Z., Matulevičiūtė, D. D., & Stankevičiūtė, D. J. (2005). Report on macrophyte monitoring in rivers and lakes.
  • Sluis, T. V. D., Poppens, R. P., Kraisvitnii, P., Rii, O., Lesschen, J. P., Galytska, M., & Elbersen, H. W. (2013). Reed harvesting from wetlands for bioenergy: Technical aspects, sustainability and economic viability of reed harvesting in Ukraine (No. 2460). Alterra, Wageningen-UR. https://library.wur.nl/WebQuery/wurpubs/444612
  • Srinivas, C., Prasad, M., & Sirisha, M. (2019). Remote sensing image segmentation using OTSU algorithm. International Journal of Computer Applications, 178(12), 46–50, 0975 – 8887.
  • Sunder, S., Ramsankaran, R., & Ramakrishnan, B. (2017). Inter-comparison of remote sensing sensing-based shoreline mapping techniques at different coastal stretches of India. Environmental Monitoring and Assessment, 189(6), 290. https://doi.org/10.1007/s10661-017-5996-1
  • Szabó, S., Gácsi, Z., & Balázs, B. (2016). Specific features of NDVI, NDWI and MNDWI as reflected in land cover categories. Landscape & Environment, 10(3–4), 194–202. https://doi.org/10.21120/LE/10/3-4/13
  • Technical specification of Plateliai Lake reed mowing. (2017).
  • Ting, K. M. (2017). Confusion Matrix. In C. Sammut & G.I. Webb (Eds.), Encyclopedia of machine learning and data mining (p. 260). Springer US. https://doi.org/10.1007/978-1-4899-7687-1_50
  • Villa, P., Bresciani, M., Pinardi, M., & Bolpagni, R. (2014, May). Multitemporal assessment of macrophytes using aquatic vegetation indices. SENTINEL-2 for Science, Rome. https://doi.org/10.13140/2.1.3856.3525
  • Villa, P., Laini, A., Bresciani, M., & Bolpagni, R. (2013). A remote sensing approach to monitor the conservation status of lacustrine phragmites australis beds. Wetlands Ecology and Management, 21(6), 399–416. https://doi.org/10.1007/s11273-013-9311-9
  • Vis, C., Hudon, C., & Carignan, R. (2003). An evaluation of approaches used to determine the distribution and biomass of emergent and submerged aquatic macrophytes over large spatial scales. Aquatic Botany, 77(3), 187–201. https://doi.org/10.1016/S0304-3770(03)00105-0
  • Xu, H. (2005). A study on information extraction of water body with the modified normalized difference water index (MNDWI). Journal of Remote Sensing, 9(5), 589–595.
  • Yen J C, Chang F J, Chang S. (1995). A new criterion for automatic multilevel thresholding. IEEE Trans Image Process, 4(3), 370–8. 10.1109/83.366472
  • Zack G W, Rogers W E and Latt S A. (1977). Automatic measurement of sister chromatid exchange frequency. J Histochem Cytochem., 25(7), 741–753. 10.1177/25.7.70454
  • Zheng, X., & Chen, T. (2021). High spatial resolution remote sensing image segmentation based on the multiclassification model and the binary classification model. Neural Computing & Applications. https://doi.org/10.1007/s00521-020-05561-8
  • Zhou, G., Ma, Z., Sathyendranath, S., Platt, T., Jiang, C., & Sun, K. (2018). Canopy reflectance modeling of aquatic vegetation for algorithm development: Global sensitivity analysis. Remote Sensing, 10(6), 837. https://doi.org/10.3390/rs10060837