1,041
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Change detection using multi-scale convolutional feature maps of bi-temporal satellite high-resolution images

&
Article: 2161419 | Received 25 Apr 2022, Accepted 18 Dec 2022, Published online: 27 Jan 2023

References

  • Benedek, C., & Sziranyi, T. 2008. “A mixed markov model for change detection in aerial photos with large time differences.” In International Conference on Pattern Recognition (pp. 1-4), Florida, USA.
  • Benedek, C., & Sziranyi, T. (2009). Change detection in optical aerial images by a multilayer conditional mixed markov model. IEEE Transactions on Geoscience and Remote Sensing, 47(10), 3416–15. https://doi.org/10.1109/TGRS.2009.2022633
  • Brigot, G., Colin-Koeniguer, E., Plyer, A., & Janez, F. (2016). Adaptation and evaluation of an optical flow method applied to coregistration of forest remote sensing images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(7), 2923–2939. https://doi.org/10.1109/JSTARS.2016.2578362
  • Canty, M. J., & Nielsen, A. A. (2008). Automatic radiometric normalization of multitemporal satellite imagery with the iteratively re-weighted MAD transformation. Remote Sensing of Environment, 112(3), 1025–1036. https://doi.org/10.1016/j.rse.2007.07.013
  • Celik, T. (2009). Unsupervised change detection in satellite images using principal component analysis and k-means clustering. IEEE Geoscience and Remote Sensing Letters, 6(4), 772–776. https://doi.org/10.1109/LGRS.2009.2025059
  • Chen, H., Chen, W., Du, B., & Zhang, L. 2019. “Deep siamese multi-scale convolutional network for change detection in multi-temporal VHR Images.” In International Workshop on the Analysis of Multitemporal Remote Sensing Images (pp.1-4), Shanghai, China.
  • Chen, H., Chen, W., Du, B., & Zhang, L. (2020). Change detection in multi-temporal vhr images based on deep siamese multi-scale convolutional networks. arxiv.org/abs/1906.11479.
  • Chen, P., Zhang, B., Hong, D., Chen, Z., Yang, X., & Baipeng, L. (2022). FCCDN: Feature constraint network for VHR image change detection. Isprs Journal of Photogrammetry and Remote Sensing, 187, 101–119. https://doi.org/10.1016/j.isprsjprs.2022.02.021
  • Daudt, R., Bertr, L., & Boulch, A. 2018. “Fully convolutional siamese networks for change detection.” In IEEE International Conference on Image Processing, 4063–4067.
  • Daudt, R., Le Saux, B., Boulch, A., & Gousseau, Y. 2018. “Urban Change Detection for Multispectral Earth Observation Using Convolutional Neural Networks.” In IEEE International Geoscience and Remote Sensing Symposium (pp. 2115-2118), Valencia, Spain.
  • Dengkui, M., Lin, H., Jiping, L., Sun, H., Zhang, Z., & Xiong, Y. 2008. “A SVM-Based change detection method from bi-temporal remote sensing images in forest area.” In International Workshop on Knowledge Discovery and Data Mining (pp. 209-212), Adelaide, Australia.
  • Goswami, A., Sharma, D., Mathuku, H., Machinathu Parambil Gangadharan, S., Shekhar Yadav, C., Kumar Sahu, S., Kumar Pradhan, M., Singh, J., & Imran, H. (2022). Change detection in remote sensing image data comparing algebraic and machine learning methods. Electronics, 11(3), 431. https://doi.org/10.3390/electronics11030431
  • Hussain, M., Chen, D., Cheng, A., Wei, H., & Stanley, D. (2013). Change detection from remotely sensed images: from pixel-based to object-based approaches. Isprs Journal of Photogrammetry and Remote Sensing, 80, 91–106. https://doi.org/10.1016/j.isprsjprs.2013.03.006
  • Jun, F., Liu, J., Tian, H., Yong, L., Bao, Y., Fang, Z., & Hanqing, L. 2019. “Dual attention network for scene segmentation.” In Conference on Computer Vision and Pattern Recognition (pp. 3146-3154), California, USA.
  • Kaiyu, L., Zhe, L., & Fang, S. 2020. “Siamese nestedunet networks for change detection of high resolution satellite image.” In International Conference on Control, Robotics and Intelligent System (pp. 42-48), Xiamen, China.
  • Kingma, D. P., & Jimmy, B. 2015. “Adam:A method for stochastic optimization.” In International Conference on Learning Representations.
  • Lei, Y., Liu, X., Shi, J., Lei, C., & Wang, J. (2019). Multiscale superpixel segmentation with deep features for change detection. IEEE Access, 7, 36600–36616. https://doi.org/10.1109/ACCESS.2019.2902613
  • Liu, S., Marinelli, D., Bruzzone, L., & Bovolo, F. (2019). A review of change detection in multitemporal hyperspectral images: current techniques, applications, and challenges. IEEE Geoscience and Remote Sensing Magazine, 7(2), 140–158. https://doi.org/10.1109/MGRS.2019.2898520
  • Luppino, L. T., Bianchi, F. M., Moser, G., & Anfinsen, S. N. 2018. “Remote sensing image regression for heterogeneous change detection.” In International Workshop on Machine Learning for Signal Processing (pp 1-6), AALBORG, DENMARK.
  • Maxwell, A. E., Warner, T. A., & Andrés Guillén, L. (2021). Accuracy assessment in convolutional neural network-based deep learning remote sensing studies—Part 1: Literature review. Remote Sensing, 13(13), 2450. https://doi.org/10.3390/rs13132450
  • Moghimi, A., Celik, T., Mohammadzadeh, A., & Kusetogullari, H. (2021). Comparison of keypoint detectors and descriptors for relative radiometric normalization of bitemporal remote sensing images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 4063–4073. https://doi.org/10.1109/JSTARS.2021.3069919
  • Moghimi, A., Sarmadian, A., Mohammadzadeh, A., Celik, T., Amani, M., & Kusetogullari, H. (2022). Distortion robust relative radiometric normalization of multitemporal and multisensor remote sensing images using image features. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–20. https://doi.org/10.1109/TGRS.2021.3063151
  • Mohsenifar, A., Mohammadzadeh, A., Moghimi, A., & Salehi, B. (2021). A novel unsupervised forest change detection method based on the integration of a multiresolution singular value decomposition fusion and an edge-aware Markov Random Field algorithm. International journal of remote sensing, 42(24), 9376–9404. https://doi.org/10.1080/01431161.2021.1995075
  • Parente, L., Taquary, E., Paula Silva, A., Souza, C., & Ferreira, L. (2019). Next generation mapping: Combining deep learning, cloud computing, and big remote sensing data. Remote Sensing, 11(23), 2881. https://doi.org/10.3390/rs11232881
  • Peng, D., Zhang, Y., & Guan, H. (2019). End-to-End change detection for high resolution satellite images using improved UNet++. Remote Sensing, 11(11), 1382. https://doi.org/10.3390/rs11111382
  • Rostami, M., Kolouri, S., Eaton, E., & Kim, K. (2019). Deep transfer learning for few-shot SAR image classification. Remote Sensing, 11(11), 1374. https://doi.org/10.3390/rs11111374
  • Sherrie, W., Chen, W., Michael Xie, S., Azzari, G., & Lobell, D. B. (2020). Weakly supervised deep learning for segmentation of remote sensing imagery. Remote Sensing, 12(2), 207. https://doi.org/10.3390/rs12020207
  • Shi, Q., Liu, M., Shengchen, L., Liu, X., Wang, F., & Zhang, L. 2021. “A deeply supervised attention metric-based network and an open aerial image dataset for remote sensing change detection.” IEEE Transactions on Geoscience and Remote Sensing.
  • Zhang, H., Gong, M., Zhang, P., Linzhi, S., & Shi, J. (2016). Feature-level change detection using deep representation and feature change analysis for multispectral imagery. IEEE Geoscience and Remote Sensing Letters, 13(11), 1666–1670. https://doi.org/10.1109/LGRS.2016.2601930
  • Zhang, C., Yue, P., Tapete, D., Jiang, L., Shangguan, B., Huang, L., & Liu, G. (2020). A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images. Isprs Journal of Photogrammetry and Remote Sensing, 166, 183–200. https://doi.org/10.1016/j.isprsjprs.2020.06.003
  • Zhao, X., Yang, Y., Duan, F., Zhang, M., Jiang, G., Yan, X., Cao, S., & Zhao, W. (2022). Identification of construction and demolition waste based on change detection and deep learning. International journal of remote sensing, 43(6), 2012–2028. https://doi.org/10.1080/01431161.2022.2054296