2,081
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Classification of tree species based on hyperspectral reflectance images of stem bark

, &
Article: 2161420 | Received 28 Sep 2022, Accepted 19 Dec 2022, Published online: 28 Dec 2022

References

  • Behmann, J., Acebron, K., Emin, D., Bennertz, S., Matsubara, S., Thomas, S., Bohnenkamp, D., Kuska, M.T., Jussila, J., Salo, H., Mahlein, A.K. Rascher, U. Specim IQ: Evaluation of a new, miniaturized handheld hyperspectral camera and its application for plant phenotyping and disease detection. (2018). Sensors, 18(2), 441. Switzerland. https://doi.org/10.3390/s18020441
  • Bellman, R. (1957). Dynamic programming ( p. 342). Princeton University Press.
  • Bergerman, M., Billingsley, J., Reid, J., & Van Henten, E. (2016). Robotics in agriculture and forestry. Springer Handbook of Robotics. https://doi.org/10.1007/978-3-319-32552-1_56
  • Bharati, M. H., Liu, J. J., & MacGregor, J. F. (2004). Image texture analysis: Methods and comparisons. Chemometrics and Intelligent Laboratory Systems, 72(1), 57–15. https://doi.org/10.1016/j.chemolab.2004.02.005
  • Boudra, S., Yahiaoui, I., & Behloul, A. (2015). A comparison of multi-scale local binary pattern variants for bark image retrieval. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9386. https://doi.org/10.1007/978-3-319-25903-1_66
  • Brynolfsson, P., Nilsson, D., Torheim, T., Asklund, T., Karlsson, C. T., Trygg, J., Nyholm, T., Garpebring, A. (2017). Haralick texture features from apparent diffusion coefficient (ADC) MRI images depend on imaging and pre-processing parameters. Scientific reports, 7(1). https://doi.org/10.1038/s41598-017-04151-4
  • Campbell, S. A., & Borden, J. H. (2005). Bark reflectance spectra of conifers and angiosperms: Implications for host discrimination by coniferophagous bark and timber beetles. The Canadian Entomologist, 137(6), 719–722. https://doi.org/10.4039/N04-082
  • Carpentier, M., Giguere, P., & Gaudreault, J. (2018). Tree species identification from bark images using convolutional neural networks. IEEE International Conference on Intelligent Robots and Systems. https://doi.org/10.1109/IROS.2018.8593514
  • European Commission. (2019). Communication from the commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions the European Green Deal. COM/2019/640 Final Communication.
  • European Commission. (2021). Communication from the commission to the European parliament, the council, the European economic and social committee and the committee of the regions New EU forest strategy for 2030. COM/2021/572 Final Communication.
  • Fiel, S., & Sablatnig, R. (2011). Automated identification of tree species from images of the bark, leaves and needles. Proceedings of the 16th Computer Vision Winter Workshop Verlag der Technischen Universität Graz, Austria.
  • Finley, K., Chhin, S., Nzokou, P., & O’Brien, J. (2016). Use of near-infrared spectroscopy as an indicator of emerald ash borer infestation in white ash stem tissue. Forest Ecology and Management, 366, 41–52. https://doi.org/10.1016/j.foreco.2016.01.032
  • Hadlich, H. L., Durgante, F. M., dos Santos, J., Higuchi, N., Chambers, J. Q., & Vicentini, A. (2018). Recognizing Amazonian tree species in the field using bark tissues spectra. Forest Ecology and Management, 427, 296–304. https://doi.org/10.1016/j.foreco.2018.06.002
  • Haralick, R. M., Shanmugam, K., & Dinstein, I. Textural features for image classification. (1973). IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(6), 610–621. SMC-3. https://doi.org/10.1109/TSMC.1973.4309314
  • Hellström, T., Lärkeryd, P., Nordfjell, T., & Ringdahl, O. (2009). Autonomous Forest vehicles: Historic, envisioned, and state-of-the-art. International Journal of Forest Engineering, 20(1), 31–38. https://doi.org/10.1080/14942119.2009.10702573
  • Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. (2012). Improving neural networks by preventing co-adaptation of feature detectors, arXiv: 1207.0580 (pp. 1–18). https://doi.org/10.48550/arXiv.1207.0580
  • Hovi, A., Schraik, D., Hanuš, J., Homolová, L., Juola, J., Lang, M., Lukeš, P., Pisek, J., Rautiainen, M. (2022). Assessment of a photon recollision probability based forest reflectance model in European boreal and temperate forests. Remote sensing of environment, 269, 269. https://doi.org/10.1016/j.rse.2021.112804
  • Juola, J., Hovi, A., & Rautiainen, M. (2020). Multiangular spectra of tree bark for common boreal tree species in europe. Silva Fennica, 54(4). https://doi.org/10.14214/sf.10331
  • Juola, J., Hovi, A., & Rautiainen, M. (2022). A spectral analysis of stem bark for boreal and temperate tree species. Ecology and Evolution, 12(3). https://doi.org/10.1002/ece3.8718
  • Kuusinen, N., Hovi, A., & Rautiainen, M. (2021). Contribution of woody elements to tree level reflectance in boreal forests. Silva Fennica, 55(5). https://doi.org/10.14214/sf.10600
  • Lim, J., Kim, K. -M., Kim, E. -H., & Jin, R. (2020). Machine learning for tree species classification using Sentinel-2 spectral information, crown texture, and environmental variables. Remote Sensing, 12(12), 2049. https://doi.org/10.3390/RS12122049
  • Malenovský, Z., Martin, E., Homolová, L., Gastellu-Etchegorry, J. P., Zurita-Milla, R., Schaepman, M. E., Pokorný, R., Clevers, J. G. P. W., Cudlín, P. (2008). Influence of woody elements of a Norway spruce canopy on nadir reflectance simulated by the DART model at very high spatial resolution. Remote sensing of environment, 112(1), 1–18. https://doi.org/10.1016/j.rse.2006.02.028
  • Ozkan, U. Y., & Demirel, T. (2021). The influence of window size on remote sensing-based prediction of forest structural variables. Ecological Processes, 10(1). https://doi.org/10.1186/s13717-021-00330-4
  • Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L. et al . (2019). PyTorch: An imperative style, high-performance deep learning library. Advances in Neural Information Processing Systems, 32: 8026–8037.
  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,12: 2825–2830.
  • Remeš, V., & Haindl, M. (2019). Bark recognition using novel rotationally invariant multispectral textural features. Pattern recognition letters, 125, 612–617. https://doi.org/10.1016/j.patrec.2019.06.027
  • Schaepman-Strub, G., Schaepman, M. E., Painter, T. H., Dangel, S., & Martonchik, J. V. (2006). Reflectance quantities in optical remote sensing—definitions and case studies. Remote Sensing of Environment, 103(1), 27–42. https://doi.org/10.1016/j.rse.2006.03.002
  • Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data, 6(1). https://doi.org/10.1186/s40537-019-0197-0
  • Song, J., Chi, Z., Liu, J., & Fu, H. (2004). Bark classification by combining grayscale and binary texture features. 2004 International Symposium on Intelligent Multimedia, Video and Speech Processing, ISIMP 2004. https://doi.org/10.1109/isimp.2004.1434097
  • Sulc, M., & Matas, J. (2013). Kernel-mapped histograms of multi-scale LBPs for tree bark recognition. International Conference Image and Vision Computing New Zealand. https://doi.org/10.1109/IVCNZ.2013.6726996
  • Šulc, M., & Matas, J. (2017). Fine-grained recognition of plants from images. Plant Methods, 13(1). https://doi.org/10.1186/s13007-017-0265-4
  • Tuceryan, M., & Jain, A. K. (1993). Texture analysis. Handbook of Pattern Recognition and Computer Vision, 235–276. https://doi.org/10.48550/arXiv.1207.0580
  • Van Der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager, N., Yu, T. … Yu, T. (2014). Scikit-image: Image processing in python. PeerJ, 2(1), e453. https://doi.org/10.7717/peerj.453
  • Verrelst, J., Schaepman, M. E., Malenovský, Z., & Clevers, J. G. P. W. (2010). Effects of woody elements on simulated canopy reflectance: Implications for forest chlorophyll content retrieval. Remote Sensing of Environment, 114(3), 647–656. https://doi.org/10.1016/j.rse.2009.11.004
  • Williams, B. K., & Titus, K. (1988). Assessment of sampling stability in ecological applications of discriminant analysis. Ecology, 69(4), 1275–1285. https://doi.org/10.2307/1941283
  • Wu, F., Gazo, R., Benes, B., & Haviarova, E. (2021). Deep BarkID: A portable tree bark identification system by knowledge distillation. European Journal of Forest Research, 140(6), 1391–1399. https://doi.org/10.1007/s10342-021-01407-7
  • Zheru, C., Li, H., & Wang, C. (2003). Plant species recognition based on bark patterns using novel Gabor filter banks. Proceedings of 2003 International Conference on Neural Networks and Signal Processing, ICNNSP’03, 2. https://doi.org/10.1109/ICNNSP.2003.1281045