2,464
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Automated urban tree survey using remote sensing data, Google street view images, and plant species recognition apps

, &
Article: 2162441 | Received 07 Sep 2022, Accepted 21 Dec 2022, Published online: 19 Jan 2023

References

  • Adkins, R.V. -C., Michael, R. K., Blahna, D. J., & Blood, M. W. (1997). Urban forest resource management at hill air force base, Ogden, Utah. Journal of Arboriculture, 23(4), 136. https://doi.org/10.48044/jauf.1997.021
  • Alonzo, M., Bookhagen, B., & Roberts, D. A. (2014). Urban tree species mapping using hyperspectral and lidar data fusion. Remote sensing of environment, 148, 70–20. https://doi.org/10.1016/j.rse.2014.03.018
  • Alvarez, F., Catanzarite, T., Castellanos, J., & Blanco-Medina, V. (2010). Biomass estimation using digital photogrammetric cameras. In Preasented at the International Calibration and Orientation Workshop EuroCOW, Castelldefels, Spain, (pp. 10–12).
  • Barbierato, E., Bernetti, I., Capecchi, I., & Saragosa, C. (2020). Integrating remote sensing and street view images to quantify urban forest ecosystem services. Remote Sensing, 12(2), 329. https://doi.org/10.3390/rs12020329
  • Bekkar, M., Djemaa, H. K., & Alitouche, T. A. (2013). Evaluation measures for models assessment over imbalanced data sets. Journal of Information Engineering and Applications, 3(4), 15–33. https://doi.org/10.5121/ijdkp.2013.3402
  • Berland, A., & Lange, D. A. (2017). Google street view shows promise for virtual street tree surveys. Urban Forestry & Urban Greening, 21, 11–15. https://doi.org/10.1016/j.ufug.2016.11.006
  • Bonnet, P., Goëau, H., Hang, S. T., Lasseck, M., Šulc, M., Malécot, V., & Joly, A. (2018). Plant identification: experts vs. machines in the era of deep learning. In Multimedia tools and applications for environmental & biodiversity informatics (pp. 131–149). Cham: Springer.
  • Brandtberg, T., Warner, T. A., Landenberger, R. E., & McGraw, J. B. (2003). Detection and analysis of individual leaf-off tree crowns in small footprint, high sampling density lidar data from the eastern deciduous forest in North America. Remote Sensing of Environment, 85(3), 290–303. https://doi.org/10.1016/S0034-4257(03)00008-7
  • Branson, S., Wegner, J. D., Hall, D., Lang, N., Schindler, K., & Perona, P. (2018). From Google Maps to a fine-grained catalog of street trees. Isprs Journal of Photogrammetry and Remote Sensing, 135, 13–30. https://doi.org/10.1016/j.isprsjprs.2017.11.008
  • Brostow, G. J., Fauqueur, J., & Cipolla, R. (2009). Semantic object classes in video: A high-definition ground truth database. Pattern recognition letters, 30(2), 88–97.
  • Burez, J., & Van den Poel, D. (2009). Handling class imbalance in customer churn prediction. Expert Systems with Applications, 36(3), 4626–4636. https://doi.org/10.1016/j.eswa.2008.05.027
  • Cappellato, L., Ferro, N., Jones, G. J., Kamps, J., Mothe, J., Pinel-Sauvagnat, K., & Savoy, J. (2016, January). Report on CLEF 2015: Experimental IR Meets Multilinguality, Multimodality, and Interaction. In ACM SIGIR Forum (Vol. 49, No. (2), pp. 47–56). New York, NY, USA: ACM.
  • Chen, Q., Baldocchi, D., Gong, P., & Kelly, M. (2006). Isolating individual trees in a savanna woodland using small footprint lidar data. Photogrammetric Engineering & Remote Sensing, 72(8), 923–932. https://doi.org/10.14358/PERS.72.8.923
  • Choi, K., Lim, W., Chang, B., Jeong, J., Kim, I., Park, C. R., & Ko, D. W. (2022). An automatic approach for tree species detection and profile estimation of urban street trees using deep learning and Google street view images. Isprs Journal of Photogrammetry and Remote Sensing, 190, 165–180. https://doi.org/10.1016/j.isprsjprs.2022.06.004
  • Clark, M. L., Roberts, D. A., & Clark, D. B. (2005). Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales. Remote Sensing of Environment, 96(3–4), 375–398. https://doi.org/10.1016/j.rse.2005.03.009
  • Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., Böhner, J. (2015). System for automated geoscientific analyses (SAGA) v. 2.1. 4. Geoscientific Model Development, 8(7), 1991–2007. https://doi.org/10.5194/gmd-8-1991-2015
  • Cook, E. A., & Iverson, L. R. (1991). Inventory and change detection of urban land cover in illinois using landsat thematic mapper data. In Technical papers ACSM-ASPRS annual convention, Balti- more, 1991. Vol. 3: Remote sensing (pp. 83–92).
  • Dabboor, M., & Shokr, M. (2013). A new likelihood ratio for supervised classification of fully polarimetric SAR data: An application for sea ice type mapping. Isprs Journal of Photogrammetry and Remote Sensing, 84, 1–11. https://doi.org/10.1016/j.isprsjprs.2013.06.010
  • Falkowski, M. J., Smith, A. M., Hudak, A. T., Gessler, P. E., Vierling, L. A., & Crookston, N. L. (2006). Automated estimation of individual conifer tree height and crown diameter via two-dimensional spatial wavelet analysis of lidar data. Canadian Journal of Remote Sensing, 32(2), 153–161. https://doi.org/10.5589/m06-005
  • Gibson, R., Danaher, T., Hehir, W., & Collins, L. (2020). A remote sensing approach to mapping fire severity in south-eastern Australia using sentinel 2 and random forest. Remote sensing of environment, 240, 111702. https://doi.org/10.1016/j.rse.2020.111702
  • Goëau, H., Bonnet, P., & Joly, A. (2021, September). Overview of PlantCLEF 2021: Cross-domain plant identification. In Working Notes of CLEF 2021-Conference and Labs of the Evaluation Forum. (Vol. 2936), 1422–1436, Sierre, Switzerland
  • Goëau, H., Bonnet, P., & Joly, A. (2021, September). Overview of PlantCLEF 2021: Cross-domain plant identification. In Working Notes of CLEF 2021-Conference and Labs of the Evaluation Forum (Vol. 2936, pp. 1422–1436).
  • Heikkinen, V., Korpela, I., Tokola, T., Honkavaara, E., & Parkkinen, J. (2011). An SVM classification of tree species radiometric signatures based on the Leica ADS40 sensor. IEEE Transactions on Geoscience and Remote Sensing, 49(11), 4539–4551.
  • Heinzel, J., & Koch, B. (2011). Exploring full-waveform LiDAR parameters for tree species classification. International Journal of Applied Earth Observation and Geoinformation, 13(1), 152–160. https://doi.org/10.1016/j.jag.2010.09.010
  • Hido, S., Kashima, H., & Takahashi, Y. (2009). Roughly balanced bagging for imbalanced data. Statistical analysis and data mining. The ASA Data Science Journal, 2(5‐6), 412–426. https://doi.org/10.1002/sam.10061
  • Hyyppä, J. U. H. A., Hyyppä, H., Yu, X., Kaartinen, H. A. R. R. I., Kukko, A. N. T. E. R. O., & Holopainen, M. (2017). Forest inventory using small-footprint airborne lidar. In Topographic laser ranging and scanning (pp. 335–370). CRC Press.
  • Hyyppa, J., Kelle, O., Lehikoinen, M., & Inkinen, M. (2001). A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners. IEEE Transactions on Geoscience and Remote Sensing, 39(5), 969–975, Taylor & Francis Group. https://doi.org/10.1109/36.921414
  • Jakuschona, N., Niers, T., Stenkamp, J., Bartoschek, T., Schade, S., & Cardoso, A. C. (2022). Evaluating image-based species recognition models suitable for citizen science application to support european invasive alien species policy (No. JRC128240. Joint Research Centre (Seville Site).
  • Jansen, L. J., Carrai, G., Morandini, L., Cerutti, P. O., & Spisni, A. (2006). Analysis of the spatio-temporal and semantic aspects of land-cover/use change dynamics 1991–2001 in Albania at national and district levels. Environmental Monitoring and Assessment, 119(1), 107–136.
  • Jing, L., Hu, B., Noland, T., & Li, J. (2012). An individual tree crown delineation method based on multi-scale segmentation of imagery. Isprs Journal of Photogrammetry and Remote Sensing, 70, 88–98. https://doi.org/10.1016/j.isprsjprs.2012.04.003
  • Jones, H. G. (2020). What plant is that? Tests of automated image recognition apps for plant identification on plants from the British flora. AoB Plants, 12(6), laa052. https://doi.org/10.1093/aobpla/plaa052
  • Keller, J. K. K., & Konijnendijk, C. C. (2012). A comparative analysis of municipal urban tree inventories of selected major cities in North America and Europe. Arboriculture & Urban Forestry, 38(1), 24–30. https://doi.org/10.48044/jauf.2012.005
  • Korpela, I., Ørka, H. O., Maltamo, M., Tokola, T., & Hyyppä, J. (2010). Tree species classification using airborne LiDar–effects of stand and tree parameters, downsizing of training set, intensity normalization, and sensor type. Silva Fennica, 44(2), 319–339. https://doi.org/10.14214/sf.156
  • Leckie, D. G., Tinis, S., Nelson, T., Burnett, C., Gougeon, F. A., Cloney, E., & Paradine, D. (2005). Issues in species classification of trees in old growth conifer stands. Canadian Journal of Remote Sensing, 31(2), 175–190. https://doi.org/10.5589/m05-004
  • Lumnitz, S., Devisscher, T., Mayaud, J. R., Radic, V., Coops, N. C., & Griess, V. C. (2021). Mapping trees along urban street networks with deep learning and street-level imagery. Isprs Journal of Photogrammetry and Remote Sensing, 175, 144–157. https://doi.org/10.1016/j.isprsjprs.2021.01.016
  • Martin, N. A. (2011). A 100% tree inventory using i-Tree Eco protocol: A case study at Auburn University, Alabama [ Doctoral dissertation].
  • Mathey, J., Rößler, S., Banse, J., Lehmann, I., & Bräuer, A. (2015). Brownfields as an element of green infrastructure for implementing ecosystem services into urban areas. Journal of Urban Planning and Development, 141(3), A4015001. https://doi.org/10.1061/(ASCE)UP.1943-5444.0000275
  • Nielsen, A. B., Östberg, J., & Delshammar, T. (2014). Review of urban tree inventory methods used to collect data at single-tree level. Arboriculture & Urban Forestry, 40(2), 96–111. https://doi.org/10.48044/jauf.2014.011
  • Östberg, J., Delshammar, T., Wiström, B., & Nielsen, A. B. (2013). Grading of parameters for urban tree inventories by city officials, arborists, and academics using the Delphi method. Environmental management, 51(3), 694–708. https://doi.org/10.1007/s00267-012-9973-8
  • Östberg, J., Martinsson, M., Stål, Ö., & Fransson, A. M. (2012). Risk of root intrusion by tree and shrub species into sewer pipes in Swedish urban areas. Urban Forestry & Urban Greening, 11(1), 65–71. https://doi.org/10.1016/j.ufug.2011.11.001
  • Padayachee, A. L., Irlich, U. M., Faulkner, K. T., Gaertner, M., Procheş, Ş., Wilson, J. R., & Rouget, M. (2017). How do invasive species travel to and through urban environments?. Biological invasions, 19(12), 3557–3570.
  • Patterson, M. F., Wiseman, P. E., Winn, M. F., Lee, S. M., & Araman, P. A. (2011). Effects of photographic distance on tree crown atributes calculated using urbancrowns image analysis software. Arboriculture & Urban Forestry, 37(4), 173–179. https://doi.org/10.48044/jauf.2011.023
  • Persson, A., Holmgren, J., & Soderman, U. (2002). Detecting and measuring individual trees using an airborne laser scanner. Photogrammetric Engineering and Remote Sensing, 68(9), 925–932.
  • Pueffel, C., Haase, D., & Priess, J. A. (2018). Mapping ecosystem services on brownfields in Leipzig, Germany. Ecosystem Services, 30, 73–85. https://doi.org/10.1016/j.ecoser.2018.01.011
  • Pu, R., & Landry, S. (2012). A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species. Remote Sensing of Environment, 124, 516–533. https://doi.org/10.1016/j.rse.2012.06.011
  • Ringland, J., Bohm, M., Baek, S. R., & Eichhorn, M. (2021). Automated survey of selected common plant species in Thai homegardens using Google Street View imagery and a deep neural network. Earth Science Informatics, 14(1), 179–191. https://doi.org/10.1007/s12145-020-00557-3
  • Roth, K. L., Roberts, D. A., Dennison, P. E., Alonzo, M., Peterson, S. H., & Beland, M. (2015). Differentiating plant species within and across diverse ecosystems with imaging spectroscopy. Remote Sensing of Environment, 167, 135–151. https://doi.org/10.1016/j.rse.2015.05.007
  • Sikorski, P., Gawryszewska, B., Sikorska, D., Chormański, J., Schwerk, A., Jojczyk, A., Ciężkowski, W., Archiciński, P., Łepkowski, M., Dymitryszyn, I., Przybysz, A., Wińska-Krysiak, M., Zajdel, B., Matusiak, J., Łaszkiewicz, E. (2021). The value of doing nothing–how informal green spaces can provide comparable ecosystem services to cultivated urban parks. Ecosystem Services, 50, 101339. https://doi.org/10.1016/j.ecoser.2021.101339
  • Silva, J., Bacao, F., Dieng, M., Foody, G. M., & Caetano, M. (2017). Improving specific class mapping from remotely sensed data by cost-sensitive learning. International Journal of Remote Sensing, 38(11), 3294–3316. https://doi.org/10.1080/01431161.2017.1292073
  • Silván-Cárdenas, J. L. (2012, June). A segmentation method for tree crown detection and modelling from LiDAR measurements. In Mexican Conference on Pattern Recognition, (pp. 65–74). Springer, Berlin, Heidelberg.
  • Simoniello, T., Coluzzi, R., Guariglia, A., Imbrenda, V., Lanfredi, M., & Samela, C. (2022). Automatic filtering and classification of low-density airborne laser scanner clouds in shrubland environments. Remote Sensing, 14(20), 5127. https://doi.org/10.3390/rs14205127
  • Small, C., & Lu, J. W. (2006). Estimation and vicarious validation of urban vegetation abundance by spectral mixture analysis. Remote Sensing of Environment, 100(4), 441–456. https://doi.org/10.1016/j.rse.2005.10.023
  • Sottini, V. A., Barbierato, E., Capecchi, I., Borghini, T., & Saragosa, C. (2021). Assessing the perception of urban visual quality: An approach integrating big data and geostatistical techniques. Aestimum, 79, 75–102.
  • Wäldchen, J., & Mäder, P. (2018). Machine learning for image based species identification. Methods in Ecology and Evolution, 9(11), 2216–2225. https://doi.org/10.1111/2041-210X.13075
  • Wallace, L., Sun, Q. C., Hally, B., Hillman, S., Both, A., Hurley, J., & Saldias, D. S. M. (2021). Linking urban tree inventories to remote sensing data for individual tree mapping. Urban Forestry & Urban Greening, 61, 127106. https://doi.org/10.1016/j.ufug.2021.127106
  • Waser, L. T., Klonus, S., Ehlers, M., Küchler, M., & Jung, A. (2010). Potential of digital sensors for land cover and tree species classifications—a case study in the framework of the DGPF-project. Photogramm Fernerkun, 2010, 141–156. https://doi.org/10.1127/1432-8364/2010/0046
  • Wegner, J. D., Branson, S., Hall, D., Schindler, K., & Perona, P. (2016). Cataloging public objects using aerial and street-level images-urban trees. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. (pp.6014–6023), San Juan, PR, USA.
  • Yao, W., & Wei, Y. (2013). Detection of 3-D individual trees in urban areas by combining airborne LiDAR data and imagery. IEEE Geoscience and Remote Sensing Letters, 10(6), 1355–1359. https://doi.org/10.1109/LGRS.2013.2241390
  • Zarrin, I. (2019, March). Leaf based trees identification using convolutional neural network. In 2019 IEEE 5th International Conference for Convergence in Technology (I2CT). (pp.1–4), IEEE, Pune, India
  • Zhang, C., Wang, L., & Yang, R. (2010, September). Semantic segmentation of urban scenes using dense depth maps. In European Conference on Computer Vision, (pp. 708–721). Springer, Berlin, Heidelberg.