826
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Pre-computation of image features for the classification of dynamic properties in breaking waves

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2163707 | Received 12 Sep 2022, Accepted 25 Dec 2022, Published online: 19 Jan 2023

References

  • Babanin, A. (2011). Breaking and Dissipation of Ocean Surface Waves. Cambridge University Press. https://doi.org/10.1017/CBO9780511736162
  • Bergamasco, F., Benetazzo, A., Yoo, J., Torsello, A., Barbariol, F., Jeong, J. -Y., Shim, J. -S., & Cavaleri, L. (2021). Toward real-time optical estimation of ocean waves’ space-time fields. Computers & Geosciences, 147, 104666. https://doi.org/10.1016/j.cageo.2020.104666
  • Brier, G. W. (1950). Verification of forecasts expressed in terms of probability. Monthly Weather Review, 78(1), 1–10. doi:10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
  • Brunton, S. L., Noack, B. R., & Koumoutsakos, P. (2020). Machine learning for fluid mechanics. Annual Review of Fluid Mechanics, 52, 477–508. https://doi.org/10.1146/annurev-fluid-010719-060214
  • Buscombe, D., & Carini, R. (2019). A data-driven approach to classifying wave breaking in infrared imagery. Remote Sensing, 11, 859. https://doi.org/10.3390/rs11070859
  • Buscombe, D., Carini, R. J., Harrison, S. R., Chickadel, C. C., & Warrick, J. A. (2020). Optical wave gauging using deep neural networks. Coastal Engineering, 155, 103593. 2020 Article 103593. https://doi.org/10.1016/j.coastaleng.2019.103593
  • Catalan, P. A., Haller, M. C., Holman, R. A., & Plant, W. J. (2011). Optical and microwave detection of wave breaking in the surf zone. IEEE Transactions Geoscience and Remote Sensing, 49(6), 1879–1893. https://doi.org/10.1109/TGRS.2010.2095864
  • Choi, H., Park, M., Son, G., Jeong, J., Park, J., Mo, K., & Kang, P. (2020). Real-time significant wave height estimations from raw ocean images based on 2D and 3D deep neural networks. Ocean Engineering, 201, 107129. https://doi.org/10.1016/j.oceaneng.2020.107129
  • Chollet, F. (2017), “Xception: Deep learning with depthwise separable convolutions,” 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1800–1807. Honolulu, HI, USA.
  • Deike, L., Lenain, L., & Melville, W. K. (2017). Air entrainment by breaking waves. Geophysical Research Letters, 44, 3779–3787. https://doi.org/10.1002/2017GL072883
  • Deike, L., Popinet, S., & Melville, W. K. (2015). Capillary effects on wave breaking. Journal of Fluid Mechanics, 769, 541–569. https://doi.org/10.1017/jfm.2015.103
  • Fedele, F., Benetazzo, A., Gallego, G., Shih, P. -C., Yezzi, A., Barbariol, F., & Ardhuin, F. (2013). Space-time measurements of oceanic sea states. Ocean Modelling, 70, 103–115. https://doi.org/10.1016/j.ocemod.2013.01.001
  • Fukami, K., Fukagata, K., & Taira, K. (2019). Super-resolution reconstruction of turbulent flows with machine learning. Journal of Fluid Mechanics, 870, 106–120. https://doi.org/10.1017/jfm.2019.238
  • Gallego, G., Yezzi, A., Fedele, F., & Benetazzo, A. (2011). A variational stereo algorithm for the 3-D reconstruction of ocean waves. IEEE Transactions on Geoscience and Remote Sensing : A Publication of the IEEE Geoscience and Remote Sensing Society, 49(11), 4445–4457.
  • Holman, R., & Haller, M. C. (2013). Remote sensing of the nearshore. Annual Review of Marine Science, 5(1), 95–113. https://doi.org/10.1146/annurev-marine-121211-172408
  • Horn, B. K. P., & Schunck, B. G. (1981). Determining optical flow. Artificial intelligence, 17, 185–203. https://doi.org/10.1016/0004-3702(81)90024-2
  • Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv. https://doi.org/10.48550/arXiv.1704.04861
  • Jessup, A. T., Zappa, C. J., Loewen, M. R., & Hesany, V. (1997). Infrared remote sensing of breaking waves. Nature, 385, 52–55. https://doi.org/10.1038/385052a0
  • Jessup, A. T., Zappa, C. J., & Yeh, H. (1997). Defining and quantifying microscale wave breaking with infrared imagery. Journal of Geophysical Research, 102(C10), 23145–23153. https://doi.org/10.1029/97JC01449
  • Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., & Fei-Fei, L., 2014. Large-scale video classification with convolutional neural networks. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (pp. 1725–1732). Columbus, OH, USA.
  • Kim, J., Kim, J., Kim, T., Huh, D., & Caires, S. (2020). Wave-tracking in the surf zone using coastal video imagery with deep neural networks. Atmosphere, 11, 304. https://doi.org/10.3390/atmos11030304
  • Lim, H. -J., Chang, K. -A., Huang, Z. -C., & Na, B. (2015). Experimental study on plunging breaking waves in deep water. Journal of Geophysical Research: Oceans, 120, 2007–2049. https://doi.org/10.1002/2014JC010269
  • Lubin, P., & Chanson, H. (2017). Are breaking waves, bores, surges and jumps the same flow? Environmental Fluid Mechanics, 17, 47–77. https://doi.org/10.1007/s10652-016-9475-y
  • Monzón, N., Salgado, A., & Sánchez, J. (2016). Robust discontinuity preserving optical flow methods. Image Processing on Line, 6, 165–182. https://doi.org/10.5201/ipol.2016.172
  • Ng, J.Y. -H., Hausknecht, M., Vijayanarasimhan, S., Vinyals, O., Monga, R., & Toderici, G. (2015). Beyond short snippets: Deep networks for video classification. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 4694–4702. Boston, MA, USA.
  • Niklaus, S. (2018), “A reimplementation of SPyNet using PyTorch.” https://github.com/sniklaus/pytorch-spynet
  • Pistellato, M., Bergamasco, F., Torsello, A., Barbariol, F., Yoo, J., Jeong, J. -Y., & Benetazzo, A. (2021). A physics-driven CNN model for real-time sea waves 3D reconstruction. Remote Sensing, 13(18), 3780. https://doi.org/10.3390/rs13183780
  • Ranjan, A., & Black, M. J. (2017), “Optical flow estimation using a spatial pyramid network,” 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (Honolulu, HI, USA) pp. 2720–2729.
  • Sáez, F. J., Catalán, P. A., & Valle, C. (2021). Wave-by-wave nearshore wave breaking identification using U-Net. Coastal Engineering, 170, 104021. https://doi.org/10.1016/j.coastaleng.2021.104021
  • Sánchez, J., Meinhardt-Llopis, E., & Facciolo, G. (2013). TV-L1 optical flow estimation. Image Processing on Line, 3, 137–150. https://doi.org/10.5201/ipol.2013.26
  • Shi, R., Leng, X., & Chanson, H. (2020). On optical flow techniques applied to breaking surges. Flow Measurements and Instrumentation, 72, 101710. https://doi.org/10.1016/j.flowmeasinst.2020.101710
  • Sonka, M., Hlavac, V., & Boyle, R. (1993). Image Processing, Analysis and Machine Vision. Springer New York, NY doi:10.1007/978-1-4899-3216-7.
  • Stringari, C. E., Harris, D. L., & Power, H. E. (2019). A novel machine learning algorithm for tracking remotely sensed waves in the surf zone. Coastal Engineering, 147, 149–158. https://doi.org/10.1016/j.coastaleng.2019.02.002
  • Stringari, C. E., Veras Guimaraẽs, P., Filipot, J. F., Leckler, F., & Duarte, R. (2021). Deep neural networks for active wave breaking classification. Scientific reports, 11(1), 3604. https://doi.org/10.1038/s41598-021-83188-y
  • Wedel, A., Pock, T., Zach, C., Bischof, H., & Cremers, D. (2009). An improved algorithm for TV-L1 optical flow, Statistical and Geometrical Approaches to Visual Motion Analysis. Lecture Notes in Computer Science, 5604, 23–45.
  • Ye, H., Wu, Z., Zhao, R. W., Wang, X., Jiang, Y. G., & Xue, X., 2015, June. Evaluating two-stream CNN for video classification. In Proceedings of the 5th ACM on International Conference on Multimedia Retrieval (pp. 435–442) Shanghai, China.
  • Youden, W. J. (1950). Index for rating diagnostic tests. Cancer, 3(1), 32–35. doi:10.1002/1097-0142(1950)3:1<32:AID-CNCR2820030106>3.0.CO;2-3
  • Zach, C., Pock, T., & Bischof, H. (2007). A duality based approach for realtime TV-L1 optical flow,” pattern recognition DAGM 2007. Lecture Notes Computer Science, 4713, 214–223.