1,465
Views
3
CrossRef citations to date
0
Altmetric
Research Article

A machine learning method for Arctic lakes detection in the permafrost areas of Siberia

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2163923 | Received 31 Mar 2022, Accepted 27 Dec 2022, Published online: 19 Jan 2023

References

  • Acharya, T. D., Subedi, A., & Lee, D. H. (2018). Evaluation of water indices for surface water extraction in a Landsat 8 scene of Nepal. Sensors, 18(8), 2580. https://doi.org/10.3390/s18082580
  • Acharya, T. D., Subedi, A., & Lee, D. H. (2019). Evaluation of machine learning algorithms for surface water extraction in a Landsat 8 scene of Nepal. Sensors, 19(12), 2769. https://doi.org/10.3390/s19122769
  • Anisimov, O. A., Belolutskaya, M. A., Grigoriev, M. N., Instanes, A., Kokorev, V. A., Oberman, N. G., Reneva, S. A., Strelchenko, Y. G., Streletskiy, D., & Shiklomanov, N. I. (2010). Major natural and social-economic consequences of climate change in the permafrost region: predictions based on observations and modeling. Greenpeace, Moscow, Russia.
  • Bangira, T., Alfieri, S. M., Menenti, M., & van Niekerk, A. (2019). Comparing thresholding with machine learning classifiers for mapping complex water. Remote Sensing, 11(11), 1351. https://doi.org/10.3390/rs11111351
  • Bao, Y., Lin, L., Wu, S., Kwal Deng, K. A., & Petropoulos, G. P. (2018). Surface soil moisture retrievals over partially vegetated areas from the synergy of Sentinel-1 and Landsat 8 data using a modified water-cloud model. International Journal of Applied Earth Observation and Geoinformation, 72, 76–18. https://doi.org/10.1016/j.jag.2018.05.026
  • Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. Isprs Journal of Photogrammetry and Remote Sensing, 114, 24–31. https://doi.org/10.1016/j.isprsjprs.2016.01.011
  • Bogoyavlensky, V. I. (2019). Innovative technologies and results of studying processes of natural and man-made degassing of the earth in the lithosphere-cryosphere-hydrosphere-atmosphere system. Third International Conference on Geology of the Caspian Sea and Adjacent Areas, 2019, 1–5. Baku, Azerbaijan. https://doi.org/10.3997/2214-4609.201952015
  • Bouamar, M., & Ladjal, M. (2007). Evaluation of the performances of ANN and SVM techniques used in water quality classification. 2007 14th IEEE International Conference on Electronics, Circuits and Systems , 1047–1050. Marrakech, Morocco.
  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
  • Bressan, G. M., Oliveira, V. A., Hruschka, E. R., Jr., & Nicoletti, M. C. (2009). Using Bayesian networks with rule extraction to infer the risk of weed infestation in a corn-crop. Engineering Applications of Artificial Intelligence, 22(4–5), 579–592. https://doi.org/10.1016/j.engappai.2009.03.006
  • Brezonik, P. L., Olmanson, L. G., Bauer, M. E., & Kloiber, S. M. (2007). Measuring water clarity and quality in Minnesota lakes and rivers: A census-based approach using remote-sensing techniques. Cura Reporter, 37(3), 3–313.
  • Brown, J., Ferrians, O. J., Jr., Heginbottom, J. A., & Melnikov, E. S. (1997). Circum-arctic map of permafrost and ground ice conditions.
  • Brown, J., & Grave, N. A. (1979). Physical and thermal disturbance and protection of permafrost. Cold Regions Research and Engineering Lab. https://apps.dtic.mil/sti/citations/ADA069405
  • Chen, X., Mu, C., Jia, L., Li, Z., Fan, C., Mu, M., Peng, X., & Wu, X. (2021). High-resolution dataset of thermokarst lakes on the Qinghai-Tibetan Plateau. Earth System Science Data Discussions, 1–23.
  • Clemente, J. P., Fontanelli, G., Ovando, G. G., Roa, Y. L. B., Lapini, A., & Santi, E. (2020). Google Earth Engine: Application of algorithms for remote sensing of crops in Tuscany (Italy). 2020 IEEE Latin American GRSS ISPRS Remote Sensing Conference (LAGIRS), 195–200. https://doi.org/10.1109/LAGIRS48042.2020.9165561
  • Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37–46. https://doi.org/10.1177/001316446002000104
  • Danades, A., Pratama, D., Anggraini, D., & Anggriani, D. (2016). Comparison of accuracy level K-nearest neighbor algorithm and support vector machine algorithm in classification water quality status. 6th International Conference on System Engineering and Technology (ICSET) , 137–141. Bandung, Indonesia.
  • Deluigi, N., Lambiel, C., & Kanevski, M. (2017). Data-driven mapping of the potential mountain permafrost distribution. The Science of the Total Environment, 590–591, 370–380. https://doi.org/10.1016/j.scitotenv.2017.02.041
  • Deng, Y., Jiang, W., Tang, Z., Li, J., Lv, J., Chen, Z., & Jia, K. (2017). Spatio-temporal change of lake water extent in Wuhan urban agglomeration based on Landsat images from 1987 to 2015. Remote Sensing, 9(3), 270. https://doi.org/10.3390/rs9030270
  • Dirscherl, M., Dietz, A. J., Kneisel, C., & Kuenzer, C. (2020). Automated mapping of Antarctic supraglacial lakes using a machine learning approach. Remote Sensing, 12(7), 1203. https://doi.org/10.3390/rs12071203
  • Donchyts, G., Baart, F., Winsemius, H., Gorelick, N., Kwadijk, J., & van de Giesen, N. (2016). Earth’s surface water change over the past 30 years. Nature climate change, 6(9), 810–813. https://doi.org/10.1038/nclimate3111
  • Du, Y., Zhang, Y., Ling, F., Wang, Q., Li, W., & Li, X. (2016). Water bodies’ mapping from Sentinel-2 Imagery with modified normalized difference water index at 10-m spatial resolution produced by sharpening the SWIR band. Remote Sensing, 8(4), 354. https://doi.org/10.3390/rs8040354
  • Fan, X., Liu, Y., Wu, G., & Zhao, X. (2020). Compositing the minimum NDVI for daily water surface mapping. Remote Sensing, 12(4), 700. https://doi.org/10.3390/rs12040700
  • Feyisa, G. L., Meilby, H., Fensholt, R., & Proud, S. R. (2014). Automated water extraction index: A new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment, 140, 23–35. https://doi.org/10.1016/j.rse.2013.08.029
  • Foga, S., Scaramuzza, P. L., Guo, S., Zhu, Z., Dilley, R. D., Beckmann, T., Schmidt, G. L., Dwyer, J. L., Joseph Hughes, M., & Laue, B. (2017). Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sensing of Environment, 194, 379–390. https://doi.org/10.1016/j.rse.2017.03.026
  • Gislason, P. O., Benediktsson, J. A., & Sveinsson, J. R. (2006). Random Forests for land cover classification. Pattern recognition letters, 27(4), 294–300. https://doi.org/10.1016/j.patrec.2005.08.011
  • Global Runoff Data Centre, G. (2020). GRDC (2020): Major river basins of the world. Federal Institute of Hydrology (BfG).
  • Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031
  • Grosse, G., Jones, B., & Arp, C. (2013). 8.21 Thermokarst lakes, drainage, and drained basins. In J.F. Shroder (Ed.), Treatise on Geomorphology (pp. 325–353). Academic Press. https://doi.org/10.1016/B978-0-12-374739-6.00216-5
  • Grosse, G., Romanovsky, V., Walter, K., Morgenstern, A., Lantuit, H., Zimov, S., Dreger, S. C., Grosse, G., Henneberger, C., Grantyn, R., Just, I., & Ahnert-Hilger, G. 2008. Distribution of thermokarst lakes and ponds at three yedoma sites in Siberia Ninth International Conference on Permafrost, 23, 1115–1126. Fairbanks, USA. https://doi.org/10.1096/fj.08-116855
  • Gutman, G., Huang, C., Chander, G., Noojipady, P., & Masek, J. G. (2013). Assessment of the NASA–USGS global land survey (GLS) datasets. Remote Sensing of Environment, 134, 249–265. https://doi.org/10.1016/j.rse.2013.02.026
  • Han, Q., & Niu, Z. (2020). Construction of the long-term global surface water extent dataset based on water-NDVI spatio-temporal parameter set. Remote Sensing, 12(17), 2675. https://doi.org/10.3390/rs12172675
  • Huang, X., Xie, C., Fang, X., & Zhang, L. (2015). Combining pixel- and object-based machine learning for identification of water-body types from urban high-resolution remote-sensing imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(5), 2097–2110. https://doi.org/10.1109/JSTARS.2015.2420713
  • Hughes-Allen, L., Bouchard, F., Laurion, I., Séjourné, A., Marlin, C., Hatté, C., Costard, F., Fedorov, A., & Desyatkin, A. (2021). Seasonal patterns in greenhouse gas emissions from thermokarst lakes in Central Yakutia (Eastern Siberia). Limnology and Oceanography, 66(S1), S98–116. https://doi.org/10.1002/lno.11665
  • Jolly, K. (2018). Machine Learning with scikit-learn Quick Start Guide: Classification, regression, and clustering techniques in Python. Packt Publishing Ltd.
  • Jorgenson, M. T., & Grosse, G. (2016). Remote sensing of landscape change in permafrost regions. Permafrost and Periglacial Processes, 27(4), 324–338. https://doi.org/10.1002/ppp.1914
  • Kallistova, A. Y., Savvichev, A. S., Rusanov, I. I., & Pimenov, N. V. (2019). Thermokarst lakes, ecosystems with intense microbial processes of the methane cycle. Microbiology (Reading, England), 88(6), 649–661. https://doi.org/10.1134/S0026261719060043
  • Khellouk, R., Barakat, A., Boudhar, A., Hadria, R., Lionboui, H., El Jazouli, A., Rais, J., El Baghdadi, M., & Benabdelouahab, T. (2020). Spatiotemporal monitoring of surface soil moisture using optical remote sensing data: A case study in a semi-arid area. Journal of Spatial Science, 65(3), 481–499. https://doi.org/10.1080/14498596.2018.1499559
  • Kiage, L. M., & Walker, N. D. (2009). Using NDVI from MODIS to monitor duckweed bloom in Lake Maracaibo, Venezuela. Water Resources Management, 23(6), 1125–1135. https://doi.org/10.1007/s11269-008-9318-9
  • Kloiber, S. M., Brezonik, P. L., Olmanson, L. G., & Bauer, M. E. (2002). A procedure for regional lake water clarity assessment using Landsat multispectral data. Remote Sensing of Environment, 82(1), 38–47. https://doi.org/10.1016/S0034-4257(02)00022-6
  • Kravtsova, V. I., & Rodinova, T. V. (2016). Issledovaniye dinamiki ploshchadi i kolichestva termokarstovykh ozer v razlichnykh rayonakh kriolitozony Rossii po kosmicheskim snimkam [Study of the dynamics of the area and the number of thermokarst lakes in various areas of the permafrost zone of Russia based on space images]. Earth Cryosphere, 20(1). https://elibrary.ru/item.asp?id=25664814
  • Kripotkin, S. N., Polnshchuk, Y. M., & Bryksina, N. A. (2008). Dinamika Ploshchadey Termokarstovykh Ozer v Sploshnoy i Preryvistoy Kriolitozonakh Zapadnoy Sibiri v Usloviyakh Global’nogo Potepleniya [Dynamics of Areas of Thermokarst Lakes in Continuous and Discontinuous Permafrost Zones of Western Siberia under the Conditions of Global Warming]. Vestnik Tomskogo Gosudarstvennogo Universiteta, 311.
  • Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159–174. https://doi.org/10.2307/2529310
  • Lawrence, D. M., & Slater, A. G. (2005). A projection of severe near-surface permafrost degradation during the 21st century. Geophysical Research Letters, 32(24). https://doi.org/10.1029/2005GL025080
  • Lawrence, R. L., & Wright, A. (2001). Rule-based classification systems using classification and regression tree (CART) analysis. Photogrammetric Engineering and Remote Sensing, 67(10), 1137–1142.
  • Lehner, B., & Döll, P. (2004). Development and validation of a global database of lakes, reservoirs and wetlands. Journal of Hydrology, 296(1–4), 1–22. https://doi.org/10.1016/j.jhydrol.2004.03.028
  • Lewis, R. J. (2000). An introduction to classification and regression tree (CART) analysis. Annual Meeting of the Society for Academic Emergency Medicine in San Francisco, 14, California, San Francisco, USA.
  • Lindgren, P. R., Farquharson, L. M., Romanovsky, V. E., & Grosse, G. (2021). Landsat-based lake distribution and changes in western Alaska permafrost regions between the 1970s and 2010s. Environmental Research Letters, 16(2), 025006. https://doi.org/10.1088/1748-9326/abd270
  • Lu, S., Wu, B., Yan, N., & Wang, H. (2011). Water body mapping method with HJ-1A/B satellite imagery. International Journal of Applied Earth Observation and Geoinformation, 13(3), 428–434. https://doi.org/10.1016/j.jag.2010.09.006
  • Mahdianpari, M., Jafarzadeh, H., Granger, J. E., Mohammadimanesh, F., Brisco, B., Salehi, B., Homayouni, S., & Weng, Q. (2020). A large-scale change monitoring of wetlands using time series Landsat imagery on Google Earth Engine: A case study in Newfoundland. GIScience & Remote Sensing, 57(8), 1102–1124. https://doi.org/10.1080/15481603.2020.1846948
  • Matveev, I. A. (1989). Agricultural atlas of the Republic Sakha (Yakutia) (Moscow: GUGK).
  • McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. https://doi.org/10.1080/01431169608948714
  • Millard, K., & Richardson, M. (2015). On the importance of training data sample selection in random forest image classification: A case study in peatland ecosystem mapping. Remote Sensing, 7(7), 8489–8515. https://doi.org/10.3390/rs70708489
  • Misra, A., Vojinovic, Z., Ramakrishnan, B., Luijendijk, A., & Ranasinghe, R. (2018). Shallow water bathymetry mapping using Support Vector Machine (SVM) technique and multispectral imagery. International Journal of Remote Sensing, 39(13), 4431–4450. https://doi.org/10.1080/01431161.2017.1421796
  • Morgenstern, A., Grosse, G., Günther, F., Fedorova, I., & Schirrmeister, L. (2011). Spatial analyses of thermokarst lakes and basins in Yedoma landscapes of the Lena Delta. The Cryosphere, 5(4), 849–867. https://doi.org/10.5194/tc-5-849-2011
  • Morgenstern, A., Grosse, G., & Schirrmeister, L. (2008). Genetic, morphological, and statistical characterization of lakes in the permafrost-dominated Lena Delta 9th International Conference on Permafrost Fairbanks, Alaska.
  • Muster, S., Heim, B., Abnizova, A., & Boike, J. (2013). Water body distributions across scales: A remote sensing based comparison of three Arctic tundra wetlands. Remote Sensing, 5(4), 1498–1523. https://doi.org/10.3390/rs5041498
  • Nath, R. K., & Deb, S. K. (2010). Water-body area extraction from high resolution satellite images-an introduction, review, and comparison. International Journal of Image Processing (IJIP), 3(6), 265–384.
  • Nguyen, U. N. T., Pham, L. T. H., & Dang, T. D. (2019). An automatic water detection approach using Landsat 8 OLI and Google Earth Engine cloud computing to map lakes and reservoirs in New Zealand. Environmental Monitoring and Assessment, 191(4), 235. https://doi.org/10.1007/s10661-019-7355-x
  • Nie, Y., Sheng, Y., Liu, Q., Liu, L., Liu, S., Zhang, Y., & Song, C. (2017). A regional-scale assessment of Himalayan glacial lake changes using satellite observations from 1990 to 2015. Remote Sensing of Environment, 189, 1–13. https://doi.org/10.1016/j.rse.2016.11.008
  • Nitze, I., Grosse, G., Jones, B. M., Arp, C. D., Ulrich, M., Fedorov, A., & Veremeeva, A. (2017). Landsat-based trend analysis of lake dynamics across northern permafrost regions. Remote Sensing, 9(7), 640. https://doi.org/10.3390/rs9070640
  • Niu, F., Lin, Z., Liu, H., & Lu, J. (2011). Characteristics of thermokarst lakes and their influence on permafrost in Qinghai–Tibet Plateau. Geomorphology, 132(3), 222–233. https://doi.org/10.1016/j.geomorph.2011.05.011
  • Obu, J., Westermann, S., Barboux, C., Bartsch, A., Delaloye, R., Grosse, G., & Wiesmann, A. (2020). ESA permafrost climate change initiative (Permafrost_cci): Permafrost active layer thickness for the northern hemisphere, v2. 0. Centre for Environmental Data Analysis. https://catalogue.ceda.ac.uk/uuid/67a3f8c8dc914ef99f7f08eb0d997e23
  • Obu, J., Westermann, S., Bartsch, A., Berdnikov, N., Christiansen, H. H., Dashtseren, A., Delaloye, R., Elberling, B., Etzelmüller, B., Kholodov, A., Khomutov, A., Kääb, A., Leibman, M. O., Lewkowicz, A. G., Panda, S. K., Romanovsky, V., Way, R. G., Westergaard-Nielsen, A., Wu, T., etal Zou, D (2019) Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale Earth-Science Reviews 193 299–316 https://doi.org/10.1016/j.earscirev.2019.04.023
  • Olefeldt, D., Goswami, S., Grosse, G., Hayes, D., Hugelius, G., Kuhry, P., McGuire, A. D., Romanovsky, V. E., Sannel, A. B. K., Schuur, E. A. G., & Turetsky, M. R. (2016). Circumpolar distribution and carbon storage of thermokarst landscapes. Nature Communications, 7(1), 13043. https://doi.org/10.1038/ncomms13043
  • Oliveira, S., Oehler, F., San-Miguel-Ayanz, J., Camia, A., & Pereira, J. M. (2012). Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest. Forest Ecology and Management, 275, 117–129. https://doi.org/10.1016/j.foreco.2012.03.003
  • Olmanson, L. G., Bauer, M. E., & Brezonik, P. L. (2008). A 20-year Landsat water clarity census of Minnesota’s 10,000 lakes. Remote Sensing of Environment, 112(11), 4086–4097. https://doi.org/10.1016/j.rse.2007.12.013
  • Palmer, S. C. J., Kutser, T., & Hunter, P. D. (2015). Remote sensing of inland waters: Challenges, progress and future directions. Remote Sensing of Environment, 157, 1–8. https://doi.org/10.1016/j.rse.2014.09.021
  • Pekel, J. -F., Cottam, A., Gorelick, N., & Belward, A. S. (2016). High-resolution mapping of global surface water and its long-term changes. Nature, 540(7633), 418–422. https://doi.org/10.1038/nature20584
  • Peters, J., De Baets, B., Verhoest, N. E., Samson, R., Degroeve, S., De Becker, P., & Huybrechts, W. (2007). Random forests as a tool for ecohydrological distribution modelling. Ecological modelling, 207(2–4), 304–318. https://doi.org/10.1016/j.ecolmodel.2007.05.011
  • Polishchuk, Y., Bogdanov, A. N., Muratov, I. N., Polishchuk, Vy., Lim, A., Manasypov, R. M., Shirokova, L. S., & Pokrovsky, O. S. (2018). Minor contribution of small thaw ponds to the pools of carbon and methane in the inland waters of the permafrost-affected part of the Western Siberian Lowland. Environmental Research Letters, 13(4), 045002.
  • Propastin, P. A. (2008). Simple model for monitoring Balkhash Lake water levels and Ili River discharges: Application of remote sensing. Lakes & Reservoirs: Research & Management, 13(1), 77–81. https://doi.org/10.1111/j.1440-1770.2007.00354.x
  • Rithin Paul Reddy, K., Srija, S. S., Karthi, R., & Geetha, P. (2020). Evaluation of water body extraction from satellite images using open-source tools. In S.M. Thampi, L. Trajkovic, S. Mitra, P. Nagabhushan, J. Mukhopadhyay, J.M. Corchado, S. Berretti, & D. Mishra (Eds.), Intelligent Systems, Technologies and Applications (pp. 129–140). Springer. https://doi.org/10.1007/978-981-13-6095-4_10
  • Rokni, K., Ahmad, A., Solaimani, K., & Hazini, S. (2015). A new approach for surface water change detection: Integration of pixel level image fusion and image classification techniques. International Journal of Applied Earth Observation and Geoinformation, 34, 226–234. https://doi.org/10.1016/j.jag.2014.08.014
  • Romanovsky, V., Isaksen, K., Drozdov, D., Anisimov, O., Instanes, A., Leibman, M., McGuire, A. D., Shiklomanov, N., Smith, S., & Walker, D. (2017). . Snow, Water, Ice and Permafrost in the Arctic (SWIPA), 2017 (Oslo: AMAP), 65–102.
  • Schneider von Deimling, T., Grosse, G., Strauss, J., Schirrmeister, L., Morgenstern, A., Schaphoff, S., Meinshausen, M., & Boike, J. (2015). Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity. Biogeosciences, 12(11), 3469–3488. https://doi.org/10.5194/bg-12-3469-2015
  • Șerban, R. -D., Jin, H., Șerban, M., Luo, D., Wang, Q., Jin, X., & Ma, Q. (2020). Mapping thermokarst lakes and ponds across permafrost landscapes in the Headwater Area of Yellow River on northeastern Qinghai-Tibet Plateau. International Journal of Remote Sensing, 41(18), 7042–7067. https://doi.org/10.1080/01431161.2020.1752954
  • Serikova, S., Pokrovsky, O. S., Laudon, H., Krickov, I. V., Lim, A. G., Manasypov, R. M., & Karlsson, J. (2019). High carbon emissions from thermokarst lakes of Western Siberia. Nature Communications, 10(1), 1–7. https://doi.org/10.1038/s41467-019-09592-1
  • Serreze, M. C., Walsh, J. E., Chapin, F. S., Osterkamp, T., Dyurgerov, M., Romanovsky, V., Oechel, W. C., Morison, J., Zhang, T., & Barry, R. G. (2000). Observational evidence of recent change in the northern high-latitude environment. Climatic Change, 46(1), 159–207. https://doi.org/10.1023/A:1005504031923
  • Shelestov, A., Lavreniuk, M., Kussul, N., Novikov, A., & Skakun, S. (2017). Exploring Google Earth Engine platform for big data processing: Classification of multi-temporal satellite imagery for crop mapping. Frontiers in Earth Science, 5, 17. https://doi.org/10.3389/feart.2017.00017
  • Shetty, S., Gupta, P. K., Belgiu, M., & Srivastav, S. K. (2021). Assessing the effect of training sampling design on the performance of machine learning classifiers for land cover mapping using multi-temporal remote sensing data and Google Earth Engine. Remote Sensing, 13(8), 1433. https://doi.org/10.3390/rs13081433
  • Shi, L., Ling, F., Foody, G. M., Chen, C., Fang, S., Li, X., Zhang, Y., & Du, Y. (2019). Permanent disappearance and seasonal fluctuation of urban lake area in Wuhan, China monitored with long time series remotely sensed images from 1987 to 2016. International Journal of Remote Sensing, 40(22), 8484–8505. https://doi.org/10.1080/01431161.2019.1612119
  • Smith, L. C., Sheng, Y., MacDonald, G. M., & Hinzman, L. D. (2005). Disappearing Arctic Lakes. Science, 308(5727), 1429–1429. https://doi.org/10.1126/science.1108142
  • Song, C., Huang, B., Ke, L., & Richards, K. S. (2014). Remote sensing of alpine lake water environment changes on the Tibetan Plateau and surroundings: A review. Isprs Journal of Photogrammetry and Remote Sensing, 92, 26–37. https://doi.org/10.1016/j.isprsjprs.2014.03.001
  • Strauss, J., Schirrmeister, L., Grosse, G., Wetterich, S., Ulrich, M., Herzschuh, U., & Hubberten, H. -W. (2013). The deep permafrost carbon pool of the Yedoma region in Siberia and Alaska. Geophysical Research Letters, 40(23), 6165–6170. https://doi.org/10.1002/2013GL058088
  • Suthaharan, S. (2016). Support Vector Machine. In S. Suthaharan (Ed.), Machine learning models and algorithms for big data classification: Thinking with examples for effective learning (pp. 207–235). Springer US. https://doi.org/10.1007/978-1-4899-7641-3_9
  • Szabó, L., Deák, B., Bíró, T., Dyke, G. J., & Szabó, S. (2020). NDVI as a proxy for estimating sedimentation and vegetation spread in artificial lakes—monitoring of spatial and temporal changes by using satellite images overarching three decades. Remote Sensing, 12(9), 1468. https://doi.org/10.3390/rs12091468
  • Tulbure, M. G., & Broich, M. (2019). Spatiotemporal patterns and effects of climate and land use on surface water extent dynamics in a dryland region with three decades of Landsat satellite data. The Science of the Total Environment, 658, 1574–1585. https://doi.org/10.1016/j.scitotenv.2018.11.390
  • Verpoorter, C., Kutser, T., Seekell, D. A., & Tranvik, L. J. (2014). A global inventory of lakes based on high-resolution satellite imagery. Geophysical Research Letters, 41(18), 6396–6402. https://doi.org/10.1002/2014GL060641
  • Vorpahl, P., Elsenbeer, H., Märker, M., & Schröder, B. (2012). How can statistical models help to determine driving factors of landslides? Ecological modelling, 239, 27–39. https://doi.org/10.1016/j.ecolmodel.2011.12.007
  • Wangchuk, S., & Bolch, T. (2020). Mapping of glacial lakes using Sentinel-1 and Sentinel-2 data and a random forest classifier: Strengths and challenges. Science of Remote Sensing, 2, 100008. https://doi.org/10.1016/j.srs.2020.100008
  • Wang, Y., Li, Z., Zeng, C., Xia, G. -S., & Shen, H. (2020). An urban water extraction method combining deep learning and Google Earth Engine. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 769–782. https://doi.org/10.1109/JSTARS.2020.2971783
  • Wang, F., Wang, X., Zhao, Y., & Yang, Z. (2014). Temporal variations of NDVI and correlations between NDVI and hydro-climatological variables at Lake Baiyangdian, China. International Journal of Biometeorology, 58(7), 1531–1543. https://doi.org/10.1007/s00484-013-0758-4
  • Wang, T., Yang, D., Fang, B., Yang, W., Qin, Y., & Wang, Y. (2019). Data-driven mapping of the spatial distribution and potential changes of frozen ground over the Tibetan Plateau. The Science of the Total Environment, 649, 515–525. https://doi.org/10.1016/j.scitotenv.2018.08.369
  • Wu, Y., Duguay, C. R., & Xu, L. (2021). Assessment of machine learning classifiers for global lake ice cover mapping from MODIS TOA reflectance data. Remote Sensing of Environment, 253, 112206. https://doi.org/10.1016/j.rse.2020.112206
  • Xie, H., Luo, X., Xu, X., Pan, H., & Tong, X. (2016). Evaluation of Landsat 8 OLI imagery for unsupervised inland water extraction. International Journal of Remote Sensing, 37(8), 1826–1844. https://doi.org/10.1080/01431161.2016.1168948
  • Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033. https://doi.org/10.1080/01431160600589179
  • Yamazaki, D., Ikeshima, D., Neal, J. C., O’Loughlin, F., Sampson, C. C., Kanae, S., & Bates, P. D. (2017). MERIT DEM: A new high-accuracy global digital elevation model and its merit to global hydrodynamic modeling. H12C-04. https://ui.adsabs.harvard.edu/abs/2017AGUFM.H12C.04Y
  • Yang, Y., Yang, D., Wang, X., Zhang, Z., & Nawaz, Z. (2021). Testing accuracy of land cover classification algorithms in the Qilian Mountains based on GEE cloud platform. Remote Sensing, 13(24), 5064. https://doi.org/10.3390/rs13245064
  • Yang, X., Zhao, S., Qin, X., Zhao, N., & Liang, L. (2017). Mapping of urban surface water bodies from Sentinel-2 MSI imagery at 10 m resolution via NDWI-based image sharpening. Remote Sensing, 9(6), 596. https://doi.org/10.3390/rs9060596
  • Yasmin, F., Sarowar Sattar, A. H. M., & Kumar Paul, M. (2019). Water bodies identification in Landsat 8 OLI image using machine learning. 2019 22nd International Conference on Computer and Information Technology (ICCIT), 1–6. https://doi.org/10.1109/ICCIT48885.2019.9038562
  • Zandt, M. H., Liebner, S., & Welte, C. U. (2020). Roles of thermokarst lakes in a warming world. Trends in Microbiology, 28(9), 769–779. https://doi.org/10.1016/j.tim.2020.04.002
  • Zhai, K., Wu, X., Qin, Y., & Du, P. (2015). Comparison of surface water extraction performances of different classic water indices using OLI and TM imageries in different situations. Geo-Spatial Information Science, 18(1), 32–42. https://doi.org/10.1080/10095020.2015.1017911
  • Zhang, W., Tan, G., Zheng, S., Sun, C., Kong, X., & Liu, Z. (2018). Land cover change detection in urban lake areas using multi-temporary very high spatial resolution aerial images. Water, 10(2), 1. https://doi.org/10.3390/w10020001
  • Zhao, D., Cai, Y., Jiang, H., Xu, D., Zhang, W., & An, S. (2011). Estimation of water clarity in Taihu Lake and surrounding rivers using Landsat imagery. Advances in Water Resources, 34(2), 165–173. https://doi.org/10.1016/j.advwatres.2010.08.010
  • Zhao, Y., Shen, Q., Wang, Q., Yang, F., Wang, S., Li, J., Zhang, F., & Yao, Y. (2020). Recognition of water colour anomaly by using Hue Angle and Sentinel 2 image. Remote Sensing, 12(4), 716. https://doi.org/10.3390/rs12040716
  • Zwoliński, Z. (2004). Geoindicators. In <.I.I.A.I.C.U.<. Goudie (Ed.), In: Encyclopedia of Geomorphology (pp. 418–420). Routledge.
  • Zwoliński, Z., Kostrzewski, A., & Rachlewicz, G. (2008). . Environmental Changes and Geomorphic Hazards (New Delhi: Bookwell), 23–36.