1,323
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Heterogeneous mass balance of selected Glaciers in the Hindu Kush, Karakoram, and Himalaya between 2000 and 2018

, , ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Article: 2173086 | Received 16 May 2022, Accepted 22 Jan 2023, Published online: 14 Feb 2023

References

  • Ahmad, S., Israr, M., Liu, S., Hayat, H., Gul, J., Wajid, S., Ashraf, M., Baig, S., & Tahir, A. (2018). Spatio-temporal trends in snow extent and their linkage to hydro-climatological and topographical factors in the Chitral River Basin (Hindukush, Pakistan). Geocarto international, 35(7), 1–11. https://doi.org/10.1080/10106049.2018.1524517
  • Alifu, H., Tateishi, R., & Johnson, B. (2015). A new band ratio technique for mapping debris-covered glaciers using Landsat imagery and a digital elevation model. International Journal of Remote Sensing, 36(8), 2063–2075. https://doi.org/10.1080/2150704X.2015.1034886
  • Anwar, Y., & Iqbal, J. (2018). Spatiotemporal change of selected glaciers along Karakoram Highway from 1994–2017 using remote sensing and GIS techniques. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, IV(3), 7–11. https://doi.org/10.5194/isprs-annals-IV-3-7-2018
  • Armstrong, R., Rittger, K., Brodzik, M., Racoviteanu, A., Barrett, A., Khalsa, S., Raup, B., Hill, A., Khan, A., Wilson, A., Kayastha, R. B., Fetterer, F., & Armstrong, B. (2019). Runoff from glacier ice and seasonal snow in High Asia: Separating melt water sources in river flow. Regional Environmental Change, 19(5), 1249–1261. https://doi.org/10.1007/s10113-018-1429-0
  • Benn, D., Owen, L., Osmaston, H., Seltzer, G., Porter, S., & Mark, B. (2005). Reconstruction of equilibrium-line altitudes for tropical and sub-tropical glaciers. Quaternary International, 138, 8–21. https://doi.org/10.1016/j.quaint.2005.02.003
  • Berthier, E., Arnaud, Y., Kumar, R., Ahmad, S., Wagnon, P., & Chevallier, P. (2007). Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India). Remote Sensing of Environment, 108(3), 327–338. https://doi.org/10.1016/j.rse.2006.11.017
  • Berthier, E., & Brun, F. (2019). Karakoram geodetic glacier mass balances between 2008 and 2016: Persistence of the anomaly and influence of a large rock avalanche on Siachen Glacier. Journal of Glaciology, 65(251), 1–14. https://doi.org/10.1017/jog.2019.32
  • Brun, F., Berthier, E., Wagnon, P., Kääb, A., & Treichler, D. (2017). A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nature geoscience, 10(9), 668–673. https://doi.org/10.1038/ngeo2999
  • Dussaillant, I., Berthier, E., & Brun, F. (2018). Geodetic mass balance of the Northern Patagonian Icefield from 2000 to 2012 using two independent methods [Original Research]. Frontiers in Earth Science, 6(8), English. https://doi.org/10.3389/feart.2018.00008.
  • Gardelle, J., Berthier, E., Arnaud, Y., & Kaab, A. 2013. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999-2011. The Cryosphere, 7(6), 1885–1886 English.
  • Gul, C., Kang, S., Ghauri, B., Haq, M., Muhammad, S., & Ali, S. (2017). Using Landsat images to monitor changes in the snow-covered area of selected glaciers in northern Pakistan. Journal of Mountain Science, 14(10), 2013–2027. https://doi.org/10.1007/s11629-016-4097-x
  • Gul, J., Muhammad, S., Liu, S., Ullah, S., Ahmad, S., Hayat, H., & Tahir, A. (2020). Spatio-temporal changes in the six major glaciers of the Chitral River basin (Hindukush Region of Pakistan) between 2001 and 2018. Journal of Mountain Science, 17(3), 572–587. https://doi.org/10.1007/s11629-019-5728-9
  • Hayat, H., Akbar, T., Tahir, A., Hassan, Q., Dewan, A., & Irshad, M. (2019). Simulating current and future river-flows in the Karakoram and Himalayan Regions of Pakistan using Snowmelt-Runoff Model and RCP scenarios. Water, 11(4), 761. https://doi.org/10.3390/w11040761
  • Huss, M. (2013). Density assumptions for converting geodetic glacier volume change to mass change. The Cryosphere Discussions, 7(3), 877–887.
  • Iturrizaga, L. (2011). Trends in 20th century and recent glacier fluctuations in the Karakoram Mountains. Zeitschrift für Geomorphologie, Supplementary Issues, 55(Suppl. 3), 205–231. https://doi.org/10.1127/0372-8854/2011/0055S3-0059
  • Kääb, A., Berthier, E., Nuth, C., Gardelle, J., & Arnaud, Y. (2012). Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature, 488(7412), 495–498. https://doi.org/10.1038/nature11324
  • Kääb, A., Treichler, D., Nuth, C., & Berthier, E. (2015). Brief Communication: Contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya. The Cryosphere, 9(2), 557–564. https://doi.org/10.5194/tc-9-557-2015
  • Kayastha, R. B., & Harrison, S. P. (2008). Changes of the equilibrium line altitude since the little ice age in the Nepalese Himalaya. Annals of Glaciology, 48(1), 93–99.
  • Kumar, P., Saharwardi, M., Banerjee, A., Azam, M. F., Dubey, A. K., & Murtugudde, R. (2019). Snowfall variability dictates Glacier Mass Balance Variability in Himalaya-Karakoram. Scientific reports, 9(1), 18192. https://doi.org/10.1038/s41598-019-54553-9
  • Minora, U., Bocchiola, D., D’agata, C., Maragno, D., Mayer, C., Lambrecht, A., Vuillermoz, E., Senese, A., Compostella, C., Smiraglia, C., & Diolaiuti, G. A. (2016). Glacier area stability in the Central Karakoram National Park (Pakistan) in 2001–2010: The ‘‘Karakoram Anomaly’’ in the spotlight. Progress in Physical Geography: Earth and Environment, 40(5), 629–660. https://doi.org/10.1177/0309133316643926
  • Muhammad, S., & Tian, L. (2016). Changes in the ablation zones of glaciers in the western Himalaya and the Karakoram between 1972 and 2015. Remote Sensing of Environment, 187, 505–512. https://doi.org/10.1016/j.rse.2016.10.034
  • Muhammad, S., Tian, L., & Nüsser, M. (2019). No significant mass loss in the glaciers of Astore Basin (North-Western Himalaya), between 1999 and 2016. Journal of Glaciology, 65(250), 270–278. https://doi.org/10.1017/jog.2019.5
  • Mukhopadhyay, B., & Khan, A. (2016). Altitudinal variations of temperature, equilibrium line altitude, and accumulation-area ratio in Upper Indus Basin. Hydrology Research, 48(1), 214–230. https://doi.org/10.2166/nh.2016.144
  • Naeem, U., Shamim, M., Ejaz, N., Rehman, H., Mustafa, U., Hashmi, H., & Ghumman, A. (2015). Investigation of temporal change in glacial extent of Chitral watershed using Landsat data. Environmental Monitoring and Assessment, 188(1), 1–13. https://doi.org/10.1007/s10661-015-5026-0
  • Neckel, N., Braun, A., Kropáček, J., & Hochschild, V. (2013). Recent mass balance of Purogangri ice cap, central Tibetan Plateau, by means of differential X-band SAR interferometry. The Cryosphere Discussions, 7(5), 1623–1633.
  • Nuth, C., & Kääb, A. (2011). Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. The Cryosphere, 5(1), 271–290. https://doi.org/10.5194/tc-5-271-2011
  • Owen, L., & Benn, D. (2005). Equilibrium-line altitudes of the Last Glacial Maximum for the Himalaya and Tibet: An assessment and evaluation of results. Quaternary International, 138-139, 55–78. https://doi.org/10.1016/j.quaint.2005.02.006
  • Paul, F., Strozzi, T., Schellenberger, T., & Kääb, A. (2017). The 2015 Surge of Hispar Glacier in the Karakoram. Remote Sensing, 9(9), 888. https://doi.org/10.3390/rs9090888
  • Racoviteanu, A., Paul, F., Raup, B., Khalsa, S., & Armstrong, R. (2010). Challenges and recommendations in mapping of glacier parameters from space: Results of the 2008 Global Land Ice Measurements from Space (GLIMS) workshop, Boulder, Colorado, USA. Annals of Glaciology - ANN GLACIOL, 50(53), 53–69. https://doi.org/10.3189/172756410790595804
  • Racoviteanu, A., Rittger, K., & Armstrong, R. (2019). An automated approach for estimating snowline altitudes in the Karakoram and Eastern Himalaya from Remote Sensing. Frontiers in Earth Science, 7(220), Original Research English. https://doi.org/10.3389/feart.2019.00220.
  • Racoviteanu, A., Williams, M., & Barry, R. (2008). Optical Remote Sensing of Glacier Characteristics: A Review with Focus on the Himalaya. Sensors (Basel, Switzerland), 8(5), 3355–3383. eng
  • Rankl, M., & Braun, M. (2016). Glacier elevation and mass changes over the central Karakoram region estimated from TanDEM-X and SRTM/X-SAR digital elevation models. Annals of Glaciology, 57(71), 51. https://doi.org/10.3189/2016AoG71A024
  • RGI Consortium. (2017). Randolph Glacier Inventory – a Dataset of Global Glacier Outlines: Version 6.0: Technical Report, Global Land Ice Measurements from Space. Digital Media. https://doi.org/10.7265/N5-RGI-60
  • Salerno, F., Thakuri, S., Tartari, G., Nuimura, T., Sunako, S., Sakai, A., & Fujita, K. (2017). Debris-covered glacier anomaly? Morphological factors controlling changes in the mass balance, surface area, terminus position, and snow line altitude of Himalayan glaciers. Earth and Planetary Science Letters, 471, 19–31. https://doi.org/10.1016/j.epsl.2017.04.039
  • Sandhu, H., Gusain, H., Arora, M., & Bawa, A. (2018). Mass Balance Estimation of Dokriani Glacier in Central Indian Himalaya Using Remote Sensing Data. Journal of the Indian Society of Remote Sensing, 46(11), 1835–1840. https://doi.org/10.1007/s12524-018-0847-2
  • Vincent, C., Ramanathan, A., Wagnon, P., Dobhal, D., Linda, A., Berthier, E., Sharma, P., Arnaud, Y., Azam, M., Pottakkal, J., & Gardelle, J. (2013). Balanced conditions or slight mass gain of glaciers in the Lahaul and Spiti region (northern India, Himalaya) during the nineties preceded recent mass loss. The Cryosphere, 7(2), 569–582. https://doi.org/10.5194/tc-7-569-2013
  • Wu, K., Liu, S., Jiang, Z., Zhu, Y., Fuming, X., Gao, Y., Ying, Y., Tahir, A., & Ullah, S. (2020). Surging Dynamics of Glaciers in the Hunza Valley under an Equilibrium Mass State since 1990. Remote Sensing, 12(18), 2922. https://doi.org/10.3390/rs12182922
  • You, Q., Ren, G., Zhang, Y., Ren, Y., Sun, X., Zhan, Y., Shrestha, A., & Krishnan, R. (2017). An overview of studies of observed climate change in the Hindu Kush Himalayan (HKH) region. Advances in Climate Change Research, 8(3), 141–147. https://doi.org/10.1016/j.accre.2017.04.001