2,944
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Urban land-use classification using machine learning classifiers: comparative evaluation and post-classification multi-feature fusion approach

ORCID Icon, , , , & ORCID Icon
Article: 2173659 | Received 19 Aug 2022, Accepted 24 Jan 2023, Published online: 22 Feb 2023

References

  • Abdi, A. M. (2019). Land cover and land use classification performance of machine learning algorithms in a boreal landscape using sentinel-2 data. GIScience & Remote Sensing, 57(1), 1–21. https://doi.org/10.1080/15481603.2019.1650447
  • Awad, M., & Khanna, R. (2015). Support vector machines for classification. In Efficient learning machines (pp. 39–66). Apress. https://doi.org/10.1007/978-1-4302-5990-9_3
  • Ballanti, L., Blesius, L., Hines, E., & Kruse, B. (2016). Tree species classification using hyperspectral imagery: A comparison of two classifiers. Remote Sensing, 8(6), 45. https://doi.org/10.3390/rs8060445
  • Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. Isprs Journal of Photogrammetry and Remote Sensing, 114, 24–31. https://doi.org/10.1016/j.isprsjprs.2016.01.011
  • Biau, G. Ã. Š., & Scornet, E. (2016). A random forest guided tour. TEST, 25(2), 197–227. https://doi.org/10.1007/s11749-016-0481-7
  • Blaschke, T., Hay, G. J., Kelly, M., Lang, S., Hofmann, P., Addink, E., Queiroz Feitosa, R., van der Meer, F., van der Werff, H., van Coillie, F., & Tiede, D. (2014). Geographic object-based image analysis – towards a new paradigm. Isprs Journal of Photogrammetry and Remote Sensing, 87, 180–191. https://doi.org/10.1016/j.isprsjprs.2013.09.014
  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
  • Camargo, F. F., Sano, E. E., Almeida, C. M., Mura, J. C., & Almeida, T. (2019). A comparative assessment of machine-learning techniques for land use and land cover classification of the Brazilian tropical savanna using ALOS-2/PALSAR-2 polarimetric images. Remote Sensing, 11(13), 1600. https://doi.org/10.3390/rs11131600
  • Carranza-García, M., García-Gutiérrez, J., & Riquelme, J. C. (2019). A framework for evaluating land use and land cover classification using convolutional neural networks. Remote Sensing, 11(3), 274. https://doi.org/10.3390/rs11030274
  • Chen, B., Huang, B., & Xu, B. (2017). Multi-source remotely sensed data fusion for improving land cover classification. Isprs Journal of Photogrammetry and Remote Sensing, 124, 27–39. https://doi.org/10.1016/j.isprsjprs.2016.12.008
  • Conchedda, G., Durieux, L., & Mayaux, P. (2008). An object-based method for mapping and change analysis in mangrove ecosystems. Isprs Journal of Photogrammetry and Remote Sensing, 63(5), 578–589. https://doi.org/10.1016/j.isprsjprs.2008.04.002
  • Dasarathy, B. V. (1997). Sensor fusion potential exploitation-innovative architectures and illustrative applications. Proceedings of the IEEE, 85 (1), 24–38. IEEE. https://doi.org/10.1109/5.554206
  • Deng, J. S., Wang, K., Deng, Y. H., & Qi, G. J. (2008). PCA-based land-use change detection and analysis using multitemporal and multisensor satellite data. International Journal of Remote Sensing, 29(16), 4823–4838. https://doi.org/10.1080/01431160801950162
  • Dixon, B., & Candade, N. (2008). Multispectral landuse classification using neural networks and support vector machines: One or the other, or both? International Journal of Remote Sensing, 29(4), 1185–1206. https://doi.org/10.1080/01431160701294661
  • Drăgut, L., Tiede, D., & Levick, S. R. (2010). ESP: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. International Journal of Geographical Information Science, 24(6), 859–871. https://doi.org/10.1080/13658810903174803
  • Dwivedi, R. S., Sreenivas, K., & Ramana, K. V. (2005). Land-use/land-cover change analysis in part of Ethiopia using landsat thematic mapper data. International Journal of Remote Sensing, 26(7), 1285–1287. https://doi.org/10.1080/01431160512331337763
  • Erbek, F. S., Özkan, C., & Taberner, M. (2004). Comparison of maximum likelihood classification method with supervised artificial neural network algorithms for land use activities. International Journal of Remote Sensing, 25(9), 1733–1748. https://doi.org/10.1080/0143116031000150077
  • Fan, F., Weng, Q., & Wang, Y. (2007). Land use land cover change in Guangzhou, China, from 1998 to 2003, based on landsat TM/ETM+ imagery. Sensors, 7(7), 1323–1342. https://doi.org/10.3390/s7071323
  • Friedl, M. A., & Brodley, C. E. (1997). Decision tree classification of land cover from remotely sensed data. Remote sensing of environment, 61(3), 399–409. https://doi.org/10.1016/S0034-4257(97)00049-7
  • Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics & Data Analysis, 38(4), 367–378. https://doi.org/10.1016/S0167-9473(01)00065-2
  • Georganos, S., Grippa, T., Vanhuysse, S., Lennert, M., Shimoni, M., & Wolff, E. (2018). Very high resolution object-based land use–land cover urban classification using extreme gradient boosting. IEEE Geoscience and Remote Sensing Letters, 15(4), 607–611. https://doi.org/10.1109/LGRS.2018.2803259
  • Gislason, P. O., Benediktsson, J. A., & Sveinsson, J. R. (2006). Random forests for land cover classification. Pattern Recognition Letters, 27(4), 294–300. https://doi.org/10.1016/j.patrec.2005.08.011
  • Gong, P., Chen, B., Li, X., Liu, H., Wang, J., Bai, Y., Chen, J., Chen, X., Fang, L., Feng, S., Feng, Y., Gong, Y., Gu, H., Huang, H., Huang, X., Jiao, H., Kang, Y., Lei, G., Li, A. … Xu, B. (2020). Mapping essential urban land use categories in China (EULUC-China): Preliminary results for 2018. Science Bulletin, 65(3), 182–187. https://doi.org/10.1016/j.scib.2019.12.007
  • Hackman, K. O., Gong, P., & Wang, J. (2017). New land-cover maps of Ghana for 2015 using landsat 8 and three popular classifiers for biodiversity assessment. International Journal of Remote Sensing, 38(14), 4008–4021. https://doi.org/10.1080/01431161.2017.1312619
  • Halder, A., Ghosh, A., & Ghosh, S. (2011). Supervised and unsupervised landuse map generation from remotely sensed images using ant based systems. Applied Soft Computing, 11(8), 5770–5781. https://doi.org/10.1016/j.asoc.2011.02.030
  • Ha, T. V., Tuohy, M., Irwin, M., & Tuan, P. V. Monitoring and mapping rural urbanization and land use changes using landsat data in the northeast subtropical region of Vietnam. (2020). The Egyptian Journal of Remote Sensing and Space Science, 23(1), 11–19. U. https://doi.org/10.1016/j.ejrs.2018.07.001
  • Huang, C., Davis, L., & Townshend, J. (2002). An assessment of support vector machines for land cover classification. International Journal of Remote Sensing, 23(4), 725–749. https://doi.org/10.1080/01431160110040323
  • Jamali, A. (2019). Evaluation and comparison of eight machine learning models in land use/land cover mapping using landsat 8 OLI: A case study of the northern region of Iran. SN Applied Sciences, 1(11), 1448. https://doi.org/10.1007/s42452-019-1527-8
  • Johnson, B., & Xie, Z. (2013). Classifying a high resolution image of an urban area using super-object information. Isprs Journal of Photogrammetry and Remote Sensing, 83, 40–49. https://doi.org/10.1016/j.isprsjprs.2013.05.008
  • Jozdani, S. E., Momeni, M., Johnson, B. A., & Sattari, M. (2018). A regression modelling approach for optimizing segmentation scale parameters to extract buildings of different sizes. International Journal of Remote Sensing, 39(3), 684–703. https://doi.org/10.1080/01431161.2017.1390273
  • Klein, D., Esch, T., Himmler, V., Thiel, M., & Dech, S. (2009). Assessment of urban extent and imperviousness of cape town using TerraSAR-X and landsat images. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July. 2009; Volume 3, p. III 1051.
  • Knorn, J., Rabe, A., Radeloff, V. C., Kuemmerle, T., Kozak, J., & Hostert, P. (2009). Land cover mapping of large areas using chain classification of neighboring landsat satellite images. Remote sensing of environment, 113(5), 957–964. https://doi.org/10.1016/j.rse.2009.01.010
  • Kranjčić, N., Medak, D., Župan, R., & Rezo, M. (2019). Machine learning methods for classification of the green infrastructure in city areas. ISPRS International Journal of Geo-Information, 8(10), 463. https://doi.org/10.3390/ijgi8100463
  • Lefulebe, B. E., Van der Walt, A., & Xulu, S. (2022). Fine-scale classification of urban land use and land cover with planetscope imagery and machine learning strategies in the city of Cape Town, South Africa. Sustainability, 14 (15), 9139. https://doi.org/10.3390/su14159139
  • Li, X., Chen, W., Cheng, X., & Wang, L. (2016). A comparison of machine learning algorithms for mapping of complex surface-mined and agricultural landscapes using ZiYuan-3 stereo satellite imagery. Remote Sensing, 8(6), 514. https://doi.org/10.3390/rs8060514
  • Lu, D., & Weng, Q. (2004). Spectral mixture analysis of the urban landscapes in Indianapolis with landsat ETM+ imagery. Photogrammetric Engineering and Remote Sensing, 70(9), 1053–1062. https://doi.org/10.14358/PERS.70.9.1053
  • Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G., & Johnson, B. A. (2019). Deep learning in remote sensing applications: A meta-analysis and review. Isprs Journal of Photogrammetry and Remote Sensing, 152, 166–177. https://doi.org/10.1016/j.isprsjprs.2019.04.015
  • Mao, W., Lu, D., Hou, L., Liu, X., & Yue, W. (2020). Comparison of machine-learning methods for urban land-use mapping in Hangzhou City, China. Remote Sensing, 12(17), 2817. https://doi.org/10.3390/rs12172817
  • Maxwell, A. E., Warner, T. A., & Fang, F. (2018). Implementation of machine-learning classification in remote sensing: An applied review. International Journal of Remote Sensing, 39(9), 2784–2817. https://doi.org/10.1080/01431161.2018.1433343
  • Melgani, F., & Bruzzone, L. (2004). Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42(8), 1778–1790. https://doi.org/10.1109/TGRS.2004.831865
  • Mohtadifar, M., Cheffena, M., & Pourafzal, A. (2022). Acoustic- and radio-frequency-based human activity recognition. Sensors, 22(9), 3125. https://doi.org/10.3390/s22093125
  • Myint, S. W., Gober, P., Brazel, A., Grossman-Clarke, S., & Weng, Q. (2011). Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote sensing of environment, 115(5), 1145–1161. https://doi.org/10.1016/j.rse.2010.12.017
  • Naidoo, L., Cho, M. A., Mathieu, R., & Asner, G. (2012). Classification of savanna tree species, in the greater kruger national park region, by integrating hyperspectral and LiDAR data in a random forest data mining environment. Isprs Journal of Photogrammetry and Remote Sensing, 69, 167–179. https://doi.org/10.1016/j.isprsjprs.2012.03.005
  • Nery, T., Sadler, R., Solis-Aulestia, M., White, B., Polyakov, M., & Chalak, M. (2016). Comparing supervised algorithms in land use and land cover classification of a landsat time-series. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 3 November. 2016.
  • Nevalainen, O., Honkavaara, E., Tuominen, S., Viljanen, N., Hakala, T., Yu, X., Hyyppä, J., Saari, H., Pölönen, I., Imai, N., & Tommaselli, A. (2017). Individual tree detection and classification with UAV-based photogrammetric point clouds and hyperspectral imaging. Remote Sensing, 9(3), 185. https://doi.org/10.3390/rs9030185
  • Nichols, J. A., Herbert Chan, H. W., & Baker, M. (2019). Machine learning: Applications of artificial intelligence to imaging and diagnosis. Biophysical Reviews, 11(1), 111–118. https://doi.org/10.1007/s12551-018-0449-9
  • Noble, W. S. (2006). What is a support vector machine? Nature Biotechnology, 24(12), 1565–1567. https://doi.org/10.1038/nbt1206-1565
  • Orieschnig, C. A., Belaud, G., Venot, J. -P., Massuel, S., & Ogilvie, A. (2021). Input imagery, classifiers, and cloud computing: Insights from multi-temporal LULC mapping in the Cambodian Mekong Delta. European Journal of Remote Sensing, 54(1), 398–416. https://doi.org/10.1080/22797254.2021.1948356
  • Ouma, Y. O., Moalafhi, D. B., Anderson, G., Nkwae, B., Odirile, P., Parida, B. P., & Qi, J. (2023). Dam water level prediction using vector autoregression, random forest regression and MLP-ANN models based on land-use and climate factors. Sustainability, 14(22), 14934. https://doi.org/10.3390/su142214934
  • Ouma, Y., Nkwae, B., Moalafhi, D., Odirile, P., Parida, B., Anderson, G., & Qi, J. (2022). Comparison of machine learning classifiers for multitemporal and multisensor mapping of urban LULC features. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B3-2022, 681–689. https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-681-2022
  • Pal, M. (2005). Random forest classifier for remote sensing classification. International Journal of Remote Sensing, 26(1), 217–222. https://doi.org/10.1080/01431160412331269698
  • Pandey, P. C., Koutsias, N., Petropoulos, G. P., Srivastava, P. K., & Ben Dor, E. (2021). Land use/land cover in view of earth observation: Data sources, input dimensions, and classifiers—a review of the state of the art. Geocarto international, 36(9), 957–988. https://doi.org/10.1080/10106049.2019.1629647
  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., & Vanderplas, J. (2011). Scikit-learn: Machine learning in python. Journal of Machine Learning Research: JMLR, 12(85), 2825–2830. https://doi.org/10.48550/arXiv.1201.0490
  • Pelletier, C., Valero, S., Inglada, J., Champion, N., Marais Sicr, C., & Dedieu, G. (2017). Effect of training class label noise on classification performances for land cover mapping with satellite image time series. Remote Sensing, 9(2), 173. https://doi.org/10.3390/rs9020173
  • Prasad, A., Iverson, L., & Liaw, A. (2006). Newer classification and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems (New York, NY), 9(2), 181–199. https://doi.org/10.1007/s10021-005-0054-1
  • Qian, Y., Zhou, W., Yan, J., Li, W., & Han, L. (2015). Comparing machine learning classifiers for object-based land cover classification using very high resolution imagery. Remote Sensing, 7(1), 153–168. https://doi.org/10.3390/rs70100153
  • Rogan, J., Franklin, J., Stow, D., Miller, J., Woodcock, C., & Roberts, D. (2008). Mapping land-cover modifications over large areas: A comparison of machine learning algorithms. Remote sensing of environment, 112(5), 2272–2283. https://doi.org/10.1016/j.rse.2007.10.004
  • Shih, H. C., Stow, D. A., & Tsai, Y. H. (2019). Guidance on and comparison of machine learning classifiers for landsat-based land cover and land use mapping. International Journal of Remote Sensing, 40(4), 1248–1274. https://doi.org/10.1080/01431161.2018.1524179
  • Shi, Y., Qi, Z., Liu, X., Niu, N., & Zhang, H. (2019). Urban land use and land cover classification using multisource remote sensing images and social media data. Remote Sensing, 11(22), 2719. https://doi.org/10.3390/rs11222719
  • Srivastava, P. K., Han, D., Rico-Ramirez, M. A., Bray, M., & Islam, T. (2012). Selection of classification techniques for land use/land cover change investigation. Advances in Space Research, 50(9), 1250–1265. https://doi.org/10.1016/j.asr.2012.06.032
  • Talukdar, S., Singha, P., Praveen, S., Mahato, B., & Rahman, A. (2020). Dynamics of ecosystem services (ESs) in response to land use land cover (LU/LC) changes in the lower gangetic plain of India. Ecological indicators, 112, 106121. https://doi.org/10.1016/j.ecolind.2020.106121
  • Teluguntla, P., Thenkabail, P. S., Oliphant, A., Xiong, J., Gumma, M. K., Congalton, R. G., & Huete, A. (2018). A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on google earth engine cloud computing platform. Isprs Journal of Photogrammetry and Remote Sensing, 144, 325–340. https://doi.org/10.1016/j.isprsjprs.2018.07.017
  • Thanh Noi, P., & Kappas, M. (2017). Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using sentinel-2 imagery. Sensors, 18(2), 18. https://doi.org/10.3390/s18010018
  • Wang, J., Bretz, M., Dewan, M. A. A., & Delavar, M. A. (2022). Machine learning in modelling land-use and land cover-change (LULCC): Current status, challenges and prospects. The Science of the Total Environment, 822, 153559. https://doi.org/10.1016/j.scitotenv.2022.153559
  • Waske, B., & Braun, M. (2009). Classifier ensembles for land cover mapping using multitemporal SAR imagery. Isprs Journal of Photogrammetry and Remote Sensing, 64(5), 450–457. https://doi.org/10.1016/j.isprsjprs.2009.01.003
  • Wu, L., Zhu, X., Lawes, R., Dunkerley, D., & Zhang, H. (2019). Comparison of machine learning algorithms for classification of LiDAR points for characterization of canola canopy structure. International Journal of Remote Sensing, 40(15), 5973–5991. https://doi.org/10.1080/01431161.2019.1584929
  • Yang, C., Wu, G., Ding, K., Shi, T., Li, Q., & Wang, J. (2017). Improving land use/land cover classification by integrating pixel unmixing and decision tree methods. Remote Sensing, 9(12), 1222. https://doi.org/10.3390/rs9121222
  • Yu, L., Liang, L., Wang, J., Zhao, Y., Cheng, Q., Hu, L., Liu, S., Yu, L., Wang, X., Zhu, P., Li, X., Xu, Y., Li, C., Fu, W., Li, X., Li, W., Liu, C., Cong, N., Zhang, H. … Gong, P. (2014). Meta-discoveries from a synthesis of satellite-based land-cover mapping research. International Journal of Remote Sensing, 35(13), 4573–4588. https://doi.org/10.1080/01431161.2014.930206
  • Yu, X., Liong, S., & Baaovic, V. (2004). EV-SVM approach for real-time hydrologic forecasting. Journal of Hydroinformatics, 6(3), 209–223. https://doi.org/10.2166/hydro.2004.0016
  • Zhang, P., Ke, Y., Zhang, Z., Wang, M., Li, P., & Zhang, S. (2018). Urban land use and land cover classification using novel deep learning models based on high spatial resolution satellite imagery. Sensors, 18(11), 3717. https://doi.org/10.3390/s18113717
  • Zhang, C., Sargent, I., Pan, X., Li, H., Gardiner, A., Hare, J., & Atkinson, P. M. (2019). Joint deep learning for land cover and land use classification. Remote sensing of environment, 221, 173–187. https://doi.org/10.1016/j.rse.2018.11.014
  • Zong, L., He, S., Lian, J., Bie, Q., Wang, X., Dong, J., & Xie, Y. (2020). Detailed mapping of urban land use based on multi-source data: A case study of Lanzhou. Remote Sensing, 12(12), 1987. https://doi.org/10.3390/rs12121987