1,086
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Fuzzy neighbourhood neural network for high-resolution remote sensing image segmentation

, ORCID Icon, , , , , & show all
Article: 2174706 | Received 30 Jun 2022, Accepted 26 Jan 2023, Published online: 16 Feb 2023

References

  • Abdollahi, A., Pradhan, B., & Alamri, A. (2020). Vnet: An end-to-end fully convolutional neural network for road extraction from high-resolution remote sensing data. IEEE Access, 8, 179424–16. https://doi.org/10.1109/ACCESS.2020.3026658
  • Alam, M., Wang, J. F., Guangpei, C., Yunrong, L., & Chen, Y. (2021). Convolutional neural network for the semantic segmentation of remote sensing images. Mobile Networks and Applications, 26(1), 200–215. https://doi.org/10.1007/s11036-020-01703-3
  • Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis & Machine Intelligence, 39(12), 2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615
  • Bao, Y., Liu, W., Gao, O., Lin, Z., & Hu, Q. (2021). E-unet++: A semantic segmentation method for remote sensing images. 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference, (pp. 1858–1862). Chongqing, China. https://doi.org/10.1109/IMCEC51613.2021.9482266
  • Caesar, H., Uijlings, J., & Ferrari, V. (2018). Coco-stuff: Thing and stuff classes in context. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (pp. 1209–1218). Salt Lake City, Utah, United States. https://doi.org/10.48550/arXiv.1612.03716
  • Chaurasia, A., & Culurciello, E. (2017). Linknet: Exploiting encoder representations for efficient semantic segmentation. Proceedings of the IEEE Visual Communications and Image Processing, Petersburg, (pp. 1–4). FL, USA. http://doi.org/10.1109/VCIP.2017.8305148
  • Chen, G., Li, C., Wei, W., Jing, W., Woźniak, M., Blažauskas, T., & Damaševičius, R. (2019). Fully convolutional neural network with augmented atrous spatial pyramid pool and fully connected fusion path for high resolution remote sensing image segmentation. Applied SciencesHttp, 9(9), 1816. https://doi.org/10.3390/app9091816
  • Chen, M., Wu, J., Liu, L., Zhao, W., Tian, F., Shen, Q., Zhao, B., & Du, R. (2021). Dr-net: An improved network for building extraction from high resolution remote sensing image. Remote Sensing, 13(2), 294. https://doi.org/10.3390/rs13020294
  • Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F., & Adam, H. (2018). Encoder-decoder with atrous separable convolution for semantic image segmentation. Proceedings of the European Conference on Computer Vision, (pp. 801–808). Munich, Germany. https://doi.org/10.48550/arXiv.1802.02611
  • de Carvalho, O. L. F., de Carvalho Júnior, O. A., de Albuquerque, A. O., Santana, N. C., Borges, D. L., Luiz, A. S., Gomes, R. A. T., & Guimarães, R. F. (2022). Multispectral panoptic segmentation: Exploring the beach setting with worldview-3 imagery. International Journal of Applied Earth Observation and Geoinformation, 112, 102910. https://doi.org/10.1016/j.jag.2022.102910
  • de Carvalho, O. L. F., de Carvalho Júnior, O. A., Silva, C. R. E., de Albuquerque, A. O., Santana, N. C., Borges, D. L., Gomes, R. A. T., & Guimarães, R. F. (2022). Panoptic segmentation meets remote sensing. Remote Sensing, 14(4), 965. https://doi.org/10.3390/rs14040965
  • Deng, Y., Ren, Z., Kong, Y., Bao, F., & Dai, Q. (2016). A hierarchical fused fuzzy deep neural network for data classification. IEEE Transactions on Fuzzy Systems, 25(4), 1006–1012. https://doi.org/10.1109/TFUZZ.2016.2574915
  • Guo, W., Yang, W., Zhang, H. J., & Hua, G. (2018). Geospatial object detection in high resolution satellite images based on multi-scale convolutional neural network. Remote Sensing, 10(1), 131. https://doi.org/10.3390/rs10010131
  • Han, B., & Wu, Y. (2017). A novel active contour model based on modified symmetric cross entropy for remote sensing river image segmentation. Pattern recognition, 67(7), 396–409. https://doi.org/10.1016/j.patcog.2017.02.022
  • He, K., Zhang, X., Ren, X., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (pp. 770–778). Las Vegas, USA. http://doi.org/10.1109/CVPR.2016.90
  • Huang, K., Zhang, Y., Cheng, H. D., Xing, P., & Zhang, B. (2021). Semantic segmentation of breast ultrasound image with pyramid fuzzy uncertainty reduction and direction connectedness feature. 25th International Conference on Pattern Recognition, (pp.3357–3364). Milan, Italy. https://doi.org/10.1109/ICPR48806.2021.9413082
  • Hua, X., Wang, X., Rui, T., Shao, F., & Wang, D. (2021). Cascaded panoptic segmentation method for high resolution remote sensing image. Applied Soft Computing, 109, 107515. https://doi.org/10.1016/j.asoc.2021.107515
  • Hurtik, P., Molek, V., & Hula, J. (2019). Data preprocessing technique for neural networks based on image represented by a fuzzy function. IEEE Transactions on Fuzzy Systems, 28(7), 1195–1204. https://doi.org/10.1109/TFUZZ.2019.2911494
  • Jabri, S., Zhang, Y., & Alaeldin, S. (2014). Stereo-based building detection in very high resolution satellite imagery using IHS color system. Proceedings of the IEEE Geoscience and Remote Sensing Symposium, (pp. 2301–2304). Quebec City, Canada. https://doi.org/10.1109/IGARSS.2014.6946930
  • Khoshboresh-Masouleh, M., & Shah-Hosseini, R. (2021a). Building panoptic change segmentation with the use of uncertainty estimation in squeeze-and-attention CNN and remote sensing observations. International Journal of Remote Sensing, 42(20), 7798–7820. https://doi.org/10.1080/01431161.2021.1966853
  • Khoshboresh-Masouleh, M., & Shah-Hosseini, R. (2021b). A deep multi-modal learning method and a new rgb-depth data set for building roof extraction. Photogrammetric Engineering & Remote Sensing, 87(10), 759–766. https://doi.org/10.14358/PERS.21-00007R2
  • Li, R., Duan, C., Zheng, S., Atkinson, P. M., & Atkinson, P. M. (2021). MACU-Net for semantic segmentation of fine-resolution remotely sensed images. IEEE Geoscience and Remote Sensing Letters, 99, 1–5. https://doi.org/10.1109/LGRS.2021.3052886
  • Li, X., He, H., Li, X., Li, D., Cheng, G., Shi, J., Weng, L., Tong, Y., & Lin, Z. (2021). Pointflow: Flowing semantics through points for aerial image segmentation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (pp. 4217–4226). Kuala Lumpur, Malaysia. http://doi.org/10.48550/arXiv.2103.06564
  • Liu, M., Jiao, L., Liu, X., Li, L., Liu, F., & Yang, S. (2020). C-CNN: Contourlet convolutional neural networks. IEEE Transactions on Neural Networks and Learning Systems, 32(6), 2636–2649. https://doi.org/10.1109/TNNLS.2020.3007412
  • Liu, R., Mi, L., & Chen, Z. (2020). Afnet: Adaptive fusion network for remote sensing image semantic sementation. IEEE Transactions on Geoscience and Romote Sensing, 59(9), 7871–7886. https://doi.org/10.1109/TGRS.2020.3034123
  • Liu, Y., Sun, P., Wergeles, N., & Shang, Y. (2021). A survey and performance evaluation of deep learning methods for small object detection. Expert Systems with Applications, 172(6), 114602. https://doi.org/10.1016/j.eswa.2021.114602
  • Liu, M., Zhou, Z., Shang, P., & Xu, D. (2019). Fuzzified image enhancement for deep learning in iris recognition. IEEE Transactions on Fuzzy Systems. PP(99) 1-1. https://doi.org/10.1109/TFUZZ.2019.2958558
  • Li, X., Zhang, L., You, A., Yang, M., Yang, K., & Tong, Y. (2019). Global aggregation then local distribution in fully convolutional networks. International Conference on Machine Learning. http://doi.org/10.48550/arXiv.1909.07229
  • Li, R., Zheng, S., Zhang, C., Duan, C., Su, J., Wang, L., & Atkinson, P. M. (2021). Multiattention network for semantic segmentation of fine-resolution remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–13. https://doi.org/10.1109/TGRS.2021.3093977
  • Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (pp. 3431–3440). Boston, United States. https://doi.org/10.1109/TPAMI.2016.2572683
  • Lu, H., Zhang, M., Xu, X., Li, Y. J., & Shen, H. T. (2020). Deep fuzzy hashing network for efficient image retrieval. IEEE Transactions on Fuzzy Systems, 29(1), 166–176. https://doi.org/10.1109/TFUZZ.2020.2984991
  • Mylonas, S. K., Stavrakoudis, D. G., & Theocharis, J. B. (2013). GeneSIS: A ga-based fuzzy segmentation algorithm for remote sensing images. Knowledge-Based Systems, 54, 86–102. https://doi.org/10.1016/j.knosys.2013.07.018
  • Nguyen, N. D., Do, T., Ngo, T. D., & Le, D. (2020). An evaluation of deep learning methods for small object detection. Journal of Electrical and Computer Engineering, 2020, 1–18. https://doi.org/10.1155/2020/3189691
  • Ni, Z. L., Bian, G. B., Xie, X. L., Hou, Z. G., Zhou, X. H., & Zhou, Y. J. (2019). Rasnet: Segmentation for tracking surgical instruments in surgical videos using refined attention segmentation network. 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (pp. 5735–5738). Berlin, Germany. https://doi.org/10.1109/EMBC.2019.8856495
  • Nida, N., Irtaza, A., Javed, A., Yousaf, M. H., & Mahmood, M. T. (2019). Melanoma lesion detection and segmentation using deep region based convolutional neural network and fuzzy c-means clustering. International Journal of Medical Informatics, 124, 37–48. https://doi.org/10.1016/j.ijmedinf.2019.01.005
  • Pal, K. K., & Sudeep, K. (2016). Preprocessing for image classification by convolutional neural networks. In Proceedings of the IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology, (pp. 1778–1781). Bangalore, India. https://doi.org/10.1109/RTEICT.2016.7808140
  • Pang, J., Chen, K., Shi, J., Feng, H., Ouyang, W., & Lin, D. (2019). Libra r-cnn: Towards balanced learning for object detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (pp. 821–830). Long Beach, USA. http://doi.org/10.1109/CVPR.2019.00091
  • Pan, S. M., Tao, Y. L., Nie, C. C., & Chong, Y. W. (2021). Pegnet: Progressive edge guidance network for semantic segmentation of remote sensing images. IEEE Geoscience and Remote Sensing Letters, 18(4), 637–641. https://doi.org/10.1109/ACCESS.2020.3015587
  • Qian, Q., Chen, L., Li, H., & Jin, R. (2019). DR loss: Improving object detection by distributional ranking. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, (pp. 12164–12172). Seattle, USA. http://doi.org/10.1109/CVPR42600.2020.01218
  • Qi, X., Li, K., Liu, P., Zhou, X., & Sun, M. (2020). Deep attention and multi-scale networks for accurate remote sensing image segmentation. IEEE Access, 8, 146627–146639. https://doi.org/10.1109/ACCESS.2020.3015587/
  • Ronneberger, O., Fischer, P., & Brox, T. (2015). Unet: Convolutional networks for biomedical image segmentation. International Conference on Medical Image Computing and Computer-assisted Intervention, (pp. 234–241). Munich, Germany. https://doi.org/10.1007/978331924574428
  • Salzano, R., Salvatori, R., Valt, M., Giuliani, G., Chatenoux, B., & Ioppi, L. (2019). Automated classification of terrestrial images: The contribution to the remote sensing of snow cover. Geosciences, 9(2), 97. https://doi.org/10.3390/geosciences9020097
  • Sharma, A., Liu, X., Yang, X., & Shi, D. (2017). A patch-based convolutional neural network for remote sensing image classification. Neural Networks, 95(11), 19–28. https://doi.org/10.1016/j.neunet.2017.07.017
  • Sherrah, J. (2016). Fully convolutional networks for dense semantic labelling of high-resolution aerial imagery. Computer Vision and Pattern Recognition. http://doi.org/10.48550/arXiv.1606.02585
  • Song, N. Q., Wang, N., Lin, W. N., & Wu, N. (2018). Using satellite remote sensing and numerical modelling for the monitoring of suspended particulate matter concentration during reclamation construction at dalian offshore airport in china. European Journal of Remote Sensing, 51(1), 878–888. https://doi.org/10.1080/22797254.2018.1498301
  • Sugeno, M., & Yasukawa, T. (1993). A fuzzy-logic-based approach to qualitative modeling. IEEE Transactions on Fuzzy Systems, 1(1), 7–31. https://doi.org/10.1109/TFUZZ.1993.390281
  • Sun, X., Shi, A., Huang, H., & Mayer, H. (2020). Bas4net: Boundary-aware semi-supervised semantic segmentation network for very high resolution remote sensing images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 5398–5413. https://doi.org/10.1109/JSTARS.2020.3021098
  • Tong, K., Wu, Y., & Zhou, F. (2020). Recent advances in small object detection based on deep learning: A review. Image and Vision Computing, 97(6), 103910. https://doi.org/10.1016/j.imavis.2020.103910
  • Wang, H., Chen, X. Z., Zhang, T. X., Xu, Z. Y., & Li, J. Y. (2022). Cctnet: Coupled CNN and transformer network for crop segmentation of remote sensing images. Remote Sensing, 14(9), 1956. https://doi.org/10.3390/rs14091956
  • Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., & Xiao, B. (2020). Deep high-resolution representation learning for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(10), 3349–3364. https://doi.org/10.1109/TPAMI.2020.2983686
  • Wei, H., Xu, X., Ou, N., Zhang, X., & Dai, Y. (2021). Deanet: Dual encoder with attention network for semantic segmentation of remote sensing imagery. Remote Sensing, 13(19), 3900. https://doi.org/10.3390/rs13193900
  • Wurm, M., Stark, T., Zhu, X. X., Weigand, M., & Taubenböck, H. (2019). Semantic segmentation of slums in satellite images using transfer learning on fully convolutional neural networks. Isprs Journal of Photogrammetry and Remote Sensing, 150, 59–69. https://doi.org/10.1016/j.isprsjprs.2019.02.006
  • Xiao, T., Liu, Y., Zhou, B., & Jiang, Y. (2018). Unified perceptual parsing for scene understanding. Proceedings of the European Conference on Computer Vision, (pp. 418–434). Munich, Germany. https://doi.org/10.1109/CVPRW53098.2021.00179
  • Xiao, Y., Tian, Z., Yu, J., Zhang, Y. S., Liu, S., Du, S., & Lan, X. (2020). A review of object detection based on deep learning. Multimedia Tools and Applications, 79(33), 23729–23791. https://doi.org/10.1007/s11042-020-08976-6
  • Xu, J., Zhao, T., Feng, G., Ni, M., & Ou, S. (2021). A fuzzy C-means clustering algorithm based on spatial context model for image segmentation. International Journal of Fuzzy Systems, 23(3), 816–832. https://doi.org/10.1007/s40815-020-01015-4
  • Yuan, Y., Chen, X., & Wang, J. (2020). Object-contextual representations for semantic segmentation. European Conference on Computer Vision, (pp. 173–190). Springer, Cham. https://doi.org/10.48550/arXiv.1909.11065
  • Yuan, J., Wang, D., & Li, R. (2014). Remote sensing image segmentation by combining spectral and texture features. IEEE Transactions on Geoscience and Remote Sensing, 52(1), 16–24. https://doi.org/10.1109/TGRS.2012.2234755
  • Yue, J., Mao, S., & Li, M. (2016). A deep learning framework for hyperspectral image classification using spatial pyramid pooling. Remote Sensing Letters, 7(9), 875–884. https://doi.org/10.1080/2150704X.2016.1193793
  • Zhang, F., Du, B., & Zhang, L. (2016). Scene classification via a gradient boosting random convolutional network framework. IEEE Transactions on Geoscience and Remote Sensing, 54(3), 1793–1802. https://doi.org/10.1109/TGRS.2015.2488681
  • Zhang, C., Pan, X., Li, H., Gardiner, A., Sargent, I., Hare, J., & Atkinson, P. M. (2018). A hybrid mlp-cnn classifier for very fine resolution remotely sensed image classification. Isprs Journal of Photogrammetry and Remote Sensing, 140, 133–144. https://doi.org/10.1016/J.ISPRSJPRS.2017.07.014
  • Zhang, X., Pan, X., & Wang, S. (2017). Fuzzy dbn with rule-based knowledge representation and high interpretability. In 12th International Conference on Intelligent Systems and Knowledge Engineering, (pp. 1–25). Nanjing, China. https://doi.org/10.1109/ISKE.2017.8258762
  • Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2017). Pyramid scene parsing network. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (pp. 2881–2890). Hawaii, USA. http://doi.org/10.1109/CVPR.2017.660
  • Zhao, Z., Vuran, M. C., Guo, F., & Scott, S. D. (2021). Deep-waveform: A learned ofdm receiver based on deep complex-valued convolutional networks. IEEE Journal on Selected Areas in Communications, 39(8), 2407–2420. https://doi.org/10.1109/JSAC.2021.3087241
  • Zhao, T., Xu, J., Chen, R., & Ma, X. (2021). Remote sensing image segmentation based on the fuzzy deep convolutional neural network. International Journal of Remote Sensing, 42(16), 6264–6283. https://doi.org/10.1080/01431161.2021.1938738
  • Zheng, X., Huan, L., Xiong, H., & Gong, J. (2019). Elkppnet: An edge-aware neural network with large kernel pyramid pooling for learning discriminative features in semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA. https://doi.org/10.48550/arXiv.1906.11428
  • Zhou, B., Zhao, H., Puig, X., Xiao, T., Fidler, S., Barriuso, A., & Torralba, A. (2019). Semantic understanding of scenes through the ade20k dataset. International Journal of Computer Vision, 127(3), 302–321. https://doi.org/10.1007/s11263-018-1140-0