1,883
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Detecting diseases in apple tree leaves using FPN–ISResNet–Faster RCNN

, , &
Article: 2186955 | Received 15 Aug 2022, Accepted 28 Feb 2023, Published online: 09 Mar 2023

References

  • Abade, A., Ferreira, P. A., & Vidal, F. D. B. (2021). Plant diseases recognition on images using convolutional neural networks: A systematic review. Computers and Electronics in Agriculture, 185, 106125. https://doi.org/10.1016/j.compag.2021.106125
  • Barman, U., Choudhury, R. D., Sahu, D., & Barman, G. G. (2020). Comparison of convolution neural networks for smartphone image based real time classification of citrus leaf disease. Computers and Electronics in Agriculture, 177, 105661. https://doi.org/10.1016/j.compag.2020.105661
  • Bhargava, A., & Bansal, A. (2020). Quality evaluation of Mono & bi-Colored Apples with computer vision and multispectral imaging. Multimedia Tools and Applications, 79(11–12), 7857–14. https://doi.org/10.1007/s11042-019-08564-3
  • Bruzzone, L., & Carlin, L. (2006). A multilevel context-based system for classification of very high spatial resolution images. IEEE Transactions on Geoscience & Remote Sensing, 44(9), 2587–2600. https://doi.org/10.1109/TGRS.2006.875360
  • Chao, X., Sun, G., Zhao, H., Li, M., & He, D. (2020). Identification of apple tree leaf diseases based on deep learning models. Symmetry, 12(7), 1065. https://doi.org/10.3390/sym12071065
  • Chen, P., Xiao, Q. X., Zhang, J., Xie, C. G., & Wang, B. (2020). Occurrence prediction of cotton pests and diseases by bidirectional long short-term memory networks with climate and atmosphere circulation. Computers and Electronics in Agriculture, 176, 105612. https://doi.org/10.1016/j.compag.2020.105612
  • Chen, J. D., Zhang, D. F., Zeb, A., & Nanehkaran, Y. A. (2021). Identification of rice plant diseases using lightweight attention networks. Expert Systems with Applications, 169, 114514. https://doi.org/10.1016/j.eswa.2020.114514
  • Douarre, C., Crispim-Junior, C. F., Gelibert, A., Tougne, L., & Rousseau, D. (2019). Novel data augmentation strategies to boost supervised segmentation of plant disease. Comput Electron Agric, 165, 104967. https://doi.org/10.1016/j.compag.2019.104967
  • ElMasrya, G., Wang, N., & Vigneault, C. (2009). Detecting chilling injury in Red Delicious apple using hyperspectral imaging and neural networks. Postharvest Biology and Technology, 52(1), 1–8. https://doi.org/10.1016/j.postharvbio.2008.11.008
  • Geetharamani, G., & Arun, P. J. (2019). Identification of plant leaf diseases using a nine-layer deep convolutional neural network. Computers & Electrical Engineering, 76, 323–338. https://doi.org/10.1016/j.compeleceng.2019.04.011
  • Golhani, K., Balasundram, S. K., Vadamalai, G., & Pradhan, B. (2018). A review of neural networks in plant disease detection using hyperspectral data. Information Processing in Agriculture, 5(3), 354–371. https://doi.org/10.1016/j.inpa.2018.05.002
  • Hou, J. W., Fan, X. G., & Liu, R. T. (2016). Optimal spatial allocation of irrigation water under uncertainty using the bilayer nested optimisation algorithm and geospatial technology. International Journal of Geographical Information Science, 30(12), 2462–2485. https://doi.org/10.1080/13658816.2016.1181264
  • Hou, J. W., Hou, B., & Sun, S. Q. (2019). Spatial optimization of low-impact development facilities based on a P-median model and an ant colony optimization. Journal of Hydrologic Engineering, 24(12), 1–9. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001855
  • Hou, J. W., Zhu, M. Y., Wang, Y. J., & Sun, S. Q. (2020). Optimal spatial priority scheme of urban LID-BMPs under different investment periods. Landscape and Urban Planning, 202, 103858. https://doi.org/10.1016/j.landurbplan.2020.103858
  • Hu, J., Shen, L., Albanie, S., Sun, G., & Wu, E. (2020). Squeeze-and-excitation networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(8), 2011–2023. https://doi.org/10.1109/TPAMI.2019.2913372
  • Hu, G. S., Yang, X. W., Zhang, Y., & Wan, M. Z. (2019). Identification of tea leaf diseases by using an improved deep convolutional neural network. Sustainable Computing: Informatics and Systems, 24, 100353. https://doi.org/10.1016/j.suscom.2019.100353
  • Jiang, P., Chen, Y., Liu, B., He, D., & Liang, C. (2019). Real-time detection of apple leaf diseases using deep learning approach based on improved convolutional neural networks. IEEE Access, 7, 59069–59080. https://doi.org/10.1109/ACCESS.2019.2914929
  • Jie, F. R., Nie, Q. F., Li, M. S., Yin, M., & Jin, T. S. (2021). Atrous spatial pyramid convolution for object detection with encoder-decoder. Neurocomputing, 464, 107–118. https://doi.org/10.1016/j.neucom.2021.07.064
  • Jin, X., Xie, Y. P., Wei, X. S., Zhao, B. R., Chen, Z. M., & Tan, X. Y. (2022). Delving deep into spatial pooling for squeeze-and-excitation networks. Pattern Recognition, 121, 108159. https://doi.org/10.1016/j.patcog.2021.108159
  • Kobayashi, J., Tsuji, J., & Noto, M., 2018. Evaluation of data augmentation for image-based plant-disease detection, 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Miyazaki, Japan, 2206–2211.
  • Krishnamoorthy, N., Prasad, L. V. N., Kumar, C. S. P., Subedi, B., Abraha, H. B., & Sathishkumar, V. E. (2021). Rice leaf diseases prediction using deep neural networks with transfer learning. Environmental Research, 198, 111275. https://doi.org/10.1016/j.envres.2021.111275
  • Kumar, S. D., Esakkirajan, S., Vimalraj, C., & Veena, B. K. 2020. Design of disease prediction method based on whale optimization employed artificial neural network in tomato fruits. Materials Today: Proceedings, International Symposium on Nanostructured, Nanoengineered and Advanced Materials (ISNNAM 2020), Gold Reef City, Johannesburg, South Africa, 33, 4907–4918.
  • Laurindo, B. S., Laurindo, R. D. F., Azevedo, A. M., Delazari, F. T., Zanuncio, J. C., & Silva, D. J. H. (2017). Optimization of the number of evaluations for early blight disease in tomato accessions using artificial neural networks. Scientia horticulturae, 218, 171–176. https://doi.org/10.1016/j.scienta.2017.02.005
  • Li, C. Y., Heinemann, P., & Sherry, R. (2007). Neural network and Bayesian network fusion models to fuse electronic nose and surface acoustic wave sensor data for apple defect detection. Sensors and Actuators B, 125(1), 301–310. https://doi.org/10.1016/j.snb.2007.02.027
  • Melgani, F., & Bruzzone, L. (2004). Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on Geoscience & Remote Sensing, 42(8), 1778–1790. https://doi.org/10.1109/TGRS.2004.831865
  • Neubeck, A., & Gool, L. V. 2006. Efficient non-maximum suppression. 18th International Conference on Pattern Recognition (ICPR’06), Hong Kong, China, 3, 850–855.
  • Pal, M. (2005). Random forest classifier for remote sensing classification. International Journal of Remote Sensing, 26(1), 217–222. https://doi.org/10.1080/01431160412331269698
  • Pal, M., & Mather, P. M. (2005). Support vector machines for classification in remote sensing. International Journal of Remote Sensing, 26(5), 1007–1011. https://doi.org/10.1080/01431160512331314083
  • Peng, Z., & Cai, C., 2017. An effective segmentation algorithm of apple watercore disease region using fully convolutional neural networks. 2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Kuala Lumpur, Malaysia, 1292–1299.
  • Picon, A., Alvarez-Gila, A., Seitz, M., Ortiz-Barredo, A., Echazarra, J., & Johannes, A. (2019). Deep convolutional neural networks for mobile capture device-based crop disease classification in the wild. Computers and Electronics in Agriculture, 161, 280–290. https://doi.org/10.1016/j.compag.2018.04.002
  • Ren, S., He, K., Girshick, R., & Sun, J. (2018). Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), 1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031
  • Sottocornola, G., Baric, S., Nocker, M., Stella, F., & Zanker, M. (2022). Picture-based and conversational decision support to diagnose post-harvest apple diseases. Expert Systems with Applications, 189, 116052. https://doi.org/10.1016/j.eswa.2021.116052
  • Sun, H. N., Xu, H. W., Liu, B., He, D. J., He, J. R., Zhang, H. X., & Geng, N. (2021). MEAN-SSD: A novel real-time detector for apple leaf diseases using improved light-weight convolutional neural networks. Computers and Electronics in Agriculture, 189, 106379. https://doi.org/10.1016/j.compag.2021.106379
  • Tian, Y. N., Yang, G. D., Wang, Z., Li, E., & Liang, Z. Z. (2019). Detection of apple lesions in orchards based on deep learning methods of CycleGAN and YOLOV3-Dense. Journal of Sensors, 2019, 7630926. https://doi.org/10.1155/2019/7630926
  • Tiwari, V., Joshi, R. C., & Dutta, M. K. (2021). Dense convolutional neural networks based multiclass plant disease detection and classification using leaf images. Ecological Informatics, 63, 101289. https://doi.org/10.1016/j.ecoinf.2021.101289
  • Triki, A., Bouaziz, B., Gaikwad, J., & Mahdi, W. (2021). Deep leaf: Mask R-CNN based leaf detection and segmentation from digitized herbarium specimen images. Pattern Recognition Letters, 150, 76–83. https://doi.org/10.1016/j.patrec.2021.07.003
  • Umit, O. (2020). Evaluation of the effectiveness of antagonistic bacteria against Phytophthora blight disease in pepper with artificial intelligence. Biological Control, 151, 104379. https://doi.org/10.1016/j.biocontrol.2020.104379
  • Vita, F. D., Nocera, G., Bruneo, D., Tomaselli, G., D, V., & Das, S. K. (2021). Porting deep neural networks on the edge via dynamic K-means compression: A case study of plant disease detection. Pervasive and Mobile Computing, 75, 101437. https://doi.org/10.1016/j.pmcj.2021.101437
  • Wang, G., Sun, Y., & Wang, J. (2017). Automatic image-based plant disease severity estimation using deep learning. Computational Intelligence and Neuroscience, 2017, 1–8. https://doi.org/10.1155/2017/2917536
  • Wang, D. F., Wang, J., Li, W. R., & Guan, P. (2021). T-CNN: Trilinear convolutional neural networks model for visual detection of plant diseases. Computers and Electronics in Agriculture, 190, 106468. https://doi.org/10.1016/j.compag.2021.106468
  • Xie, X., Ma, Y., Liu, B., He, J., Li, S., & Wang, H. (2020). A deep-learning-based real-time detector for grape leaf diseases using improved convolutional neural networks. Frontiers in Plant Science, 11, 751. https://doi.org/10.3389/fpls.2020.00751
  • Yang, C., Hou, J., & Wang, Y. (2021). Extraction of land covers from remote sensing images based on a deep learning model of NDVI-RSU-Net. Arabian Journal of Geosciences, 14(2073). https://doi.org/10.1007/s12517-021-08420-5
  • Yan, Q., Yang, B., Wang, W., Wang, B., Chen, P., & Zhang, J. (2020). Apple leaf diseases recognition based on an improved convolutional neural network. Sensors, 20(12), 3535. https://doi.org/10.3390/s20123535
  • Yu, Y., Zhang, K. L., Yang, L., & Zhang, D. X. (2019). Fruit detection for strawberry harvesting robot in non-structural environment based on Mask-RCNN. Computers and Electronics in Agriculture, 163, 104846. https://doi.org/10.1016/j.compag.2019.06.001
  • Zhang, Y. H., Fu, K., Sun, H., Sun, X., Wang, H. Q., & Wang, H. (2018). A multi-model ensemble method based on convolutional neural networks for aircraft detection in large remote sensing images. Remote Sensing Letters, 9(1), 11–20. https://doi.org/10.1080/2150704X.2017.1378452
  • Zhang, S. W., Zhang, S. B., Zhang, C. L., Wang, X. F., & Shi, Y. (2019). Cucumber leaf disease identification with global pooling dilated convolutional neural network. Computers and Electronics in Agriculture, 162, 422–430. https://doi.org/10.1016/j.compag.2019.03.012
  • Zhong, Y., & Zhao, M. (2020). Research on deep learning in apple leaf disease recognition. Computers and Electronics in Agriculture, 168, 105146. https://doi.org/10.1016/j.compag.2019.105146