1,626
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Assessing the effectiveness of UAV data for accurate coastal dune habitat mapping

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2191870 | Received 20 Sep 2022, Accepted 13 Mar 2023, Published online: 28 Mar 2023

References

  • Aghababaei, M., Ebrahimi, A., Naghipour, A. A., Asadi, E., & Verrelst, J. (2021). Vegetation types mapping using multi-temporal Landsat images in the google earth engine platform. Remote Sensing, 13(22), 4683. https://doi.org/10.3390/rs13224683
  • Agüera-Vega, F., Agüera-Puntas, M., Martínez-Carricondo, P., Mancini, F., & Carvajal, F. (2020). Effects of point cloud density, interpolation method and grid size on derived digital terrain model accuracy at micro topography level. International Journal of Remote Sensing, 41(21), 8281–17. https://doi.org/10.1080/01431161.2020.1771788
  • Alvarez-Vanhard, E., Houet, T., Mony, C., Lecoq, L., & Corpetti, T. (2020). Can UAVs fill the gap between in situ surveys and satellites for habitat mapping? Remote Sensing of Environment, 243, 111780. https://doi.org/10.1016/j.rse.2020.111780
  • Amani, M., Salehi, B., Mahdavi, S., Granger, J. E., Brisco, B., & Hanson, A. (2017). Wetland classification using multi-source and multi-temporal optical remote sensing data in newfoundland and labrador, Canada. Canadian Journal of Remote Sensing, 43(4), 360–373. https://doi.org/10.1080/07038992.2017.1346468
  • Anderson, K., & Gaston, K. J. (2013). Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Frontiers in Ecology and the Environment, 11(3), 138–146. https://doi.org/10.1890/120150
  • Assmann, J. J., Kerby, J. T., Cunliffe, A. M., & Myers-Smith, I. H. (2019). Vegetation monitoring using multispectral sensors — best practices and lessons learned from high latitudes. Journal of Unmanned Vehicle Systems, 7(1), 54–75. https://doi.org/10.1139/juvs-2018-0018
  • Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., & Silliman, B. R. (2011). The value of estuarine and coastal ecosystem services. Ecological Monographs, 81(2), 169–193. https://doi.org/10.1890/10-1510.1
  • Barnes, E. M., Clarke, T. R., Richards, S. E., Collaizzi, P. D., Haberland, J., Kostrzewski, M., Waller, P., Choi, C., Riley, E., Thompson, T., Lascano, R. J., Li, H., & Moran, M. S. (2000). Coincident detection of crop water stress, nitrogen status and canopy density using ground-based multispectral data. Proceedings of the 5th International Conference on Precision Agriculture and other resource management. Precision Agriculture Center.
  • Barrett, B., Raab, C., Cawkwell, F., & Green, S. (2016). Upland vegetation mapping using random forests with optical and radar satellite data. Remote Sensing in Ecology and Conservation, 2(4), 212–231. https://doi.org/10.1002/rse2.32
  • Bazzichetto, M., Malavasi, M., Acosta, A. T. R., & Carranza, M. L. (2016). How does dune morphology shape coastal EC habitats occurrence? A remote sensing approach using airborne LiDAR on the Mediterranean coast. Ecological Indicators, 71, 618–626. https://doi.org/10.1016/j.ecolind.2016.07.044
  • Belcore, E., Pittarello, M., Lingua, A. M., & Lonati, M. (2021). Mapping riparian habitats of Natura 2000 network (91E0*, 3240) at individual tree level using UAV multi-temporal and multi-spectral data. Remote Sensing, 13(9), 1756. https://doi.org/10.3390/rs13091756
  • Belgiu, M., & Drăgut, L. (2016). Random forest in remote sensing: A review of applications and future directions. Isprs Journal of Photogrammetry and Remote Sensing, 114, 24–31. https://doi.org/10.1016/j.isprsjprs.2016.01.011
  • Berrar, D. (2019). Cross-validation. Encyclopedia of Bioinformatics and Computational Biology, 1, 542–545. https://doi.org/10.1016/B978-0-12-809633-8.20349-X
  • Bird, E. (2008). Coastal geomorphology: An introduction (2nd ed.). John Wiley & Sons Ltd.
  • Bird, E. (2010). Encyclopedia of the world’s coastal landforms. Springer Science & Business Media.
  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
  • Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees (1st ed.). CRC Press.
  • Cohen, O., & Héquette, A. (2020). Recent advances in coastal survey techniques: From GNSS to LiDAR and digital photogrammetry - Examples on the northern coast of France. In J.P. Tiefenbacher & D. Poreh (Eds.), Spatial variability in environmental science - patterns, processes, and analyses (pp. 1–22). IntechOpen.
  • Commission of the European Communities. (1992). Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Official Journal of the European Union, 206, 7–50.
  • Connolly, J. (2018). Mapping land use on Irish peatlands using medium resolution satellite imagery. Irish Geography, 51(2), 187–204. https://irishgeography.ie/index.php/irishgeography/article/view/1371
  • Cruzan, M. B., Weinstein, B. G., Grasty, M. R., Kohrn, B. F., Hendrickson, E. C., Arredondo, T. M., & Thompson, P. G. (2016). Small unmanned aerial vehicles (micro-UAVs, drones) in plant ecology. Applications in Plant Sciences, 4(9), 1600041. https://doi.org/10.3732/apps.1600041
  • Delaney, A., Devaney, F. M., Martin, J. R., & Barron, S. J. (2013). Monitoring survey of Annex I sand dune habitats in Ireland (Irish Wildlife Manuals No. 75). National Parks and Wildlife Service, Department of Arts, Heritage and the Gaeltacht. https://www.npws.ie/sites/default/files/publications/pdf/IWM75.pdf
  • Doody, J. P. (2013). Sand dune conservation, management and restoration. Springer. https://doi.org/10.1007/978-94-007-4731-9
  • Ettritch, G., Bunting, P., Jones, G., & Hardy, A. (2018). Monitoring the coastal zone using earth observation: Application of linear spectral unmixing to coastal dune systems in Wales. Remote Sensing in Ecology and Conservation, 4(4), 303–319. https://doi.org/10.1002/rse2.79
  • European Commission. (2013). Interpretation manual of European Union habitats EUR 28. http://ec.europa.eu/environment/nature/legislation/habitatsdirective/docs/Int_Manual_EU28.pdf
  • European Commission. (2022). Proposal for a regulation of the European Parliament and of the Council on nature restoration. https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52022PC0304&from=EN
  • Fawagreh, K., Gaber, M. M., & Elyan, E. (2014). Random forests: From early developments to recent advancements. Systems Science and Control Engineering: An Open Access Journal, 2(1), 602–609. https://doi.org/10.1080/21642583.2014.956265
  • Feng, Q., Liu, J., & Gong, J. (2015). UAV remote sensing for urban vegetation mapping using Random Forest and texture analysis. Remote Sensing, 7, 1074–1094. https://doi.org/10.3390/rs70101074
  • Fossitt, J. A. (2000). A guide to habitats in Ireland. The Heritage Council.
  • Fraser, R. H., Olthof, I., Lantz, T. C., & Schmitt, C. (2016). UAV photogrammetry for mapping vegetation in the low-Arctic. Arctic Science, 2(3), 79–102. https://doi.org/10.1139/as-2016-0008
  • Gislason, P. O., Benediktsson, J. A., & Sveinsson, J. R. (2006). Random Forests for land cover classification. Pattern Recognition Letters, 27(4), 294–300. https://doi.org/10.1016/j.patrec.2005.08.011
  • Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS- MODIS. Remote Sensing of Environment, 58(3), 289–298. https://doi.org/10.1016/S0034-4257(96)00072-7
  • Gonçalves, J., Henriques, R., Alves, P., Sousa-Silva, R., Monteiro, A. T., Lomba, Â., Marcos, B., & Honrado, J. (2016). Evaluating an unmanned aerial vehicle-based approach for assessing habitat extent and condition in fine-scale early successional mountain mosaics. Applied Vegetation Science, 19, 132–146. https://doi.org/10.1111/avsc.12204
  • Han, L., Yang, G., Dai, H., Xu, B., Yang, H., Feng, H., Li, Z., & Yang, X. (2019). Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data. Plant Methods, 15, 10. https://doi.org/10.1186/s13007-019-0394-z
  • Hill, R. A., Wilson, A. K., George, M., & Hinsley, S. A. (2010). Mapping tree species in temperate deciduous woodland using time-series multi-spectral data. Applied Vegetation Science, 13(1), 86–99. https://doi.org/10.1111/J.1654-109X.2009.01053.X
  • Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1–2), 195–213. https://doi.org/10.1016/S0034-4257(02)00096-2
  • Hughes, M. G., Knight, J., & Masselink, G. (2014). Introduction to coastal processes and geomorphology (2nd ed.). Routledge.
  • Jensen, J. R. (2014). Remote sensing of the environment: An earth resource perspective (2nd ed.). Pearson Education Limited.
  • Jiang, Z., Huete, A. R., Kim, Y., & Didan, K. (2007). 2-band enhanced vegetation index without a blue band and its application to AVHRR data. Proc. SPIE 6679, Remote Sensing and Modeling of Ecosystems for Sustainability IV, 667905. https://doi.org/10.1117/12.734933
  • Jiang, J., Johansen, K., Tu, Y. H., & McCabe, M. F. (2022). Multi-sensor and multi-platform consistency and interoperability between UAV, Planet CubeSat, Sentinel-2, and Landsat reflectance data. GIScience & Remote Sensing, 59(1), 936–958. https://doi.org/10.1080/15481603.2022.2083791
  • Jolliffe, I. T. (2002). Principal components analysis (2nd ed.). Springer. https://doi.org/10.1007/b98835
  • Jordan, C. F. (1969). Derivation of leaf-area index from quality of light on the forest floor. Ecology, 50(4), 663–666. https://doi.org/10.2307/1936256
  • Kattenborn, T., Eichel, J., & Fassnacht, F. E. (2019). Convolutional Neural Networks enable efficient, accurate and fine-grained segmentation of plant species and communities from high-resolution UAV imagery. Scientific Reports, 9, 17656. https://doi.org/10.1038/s41598-019-53797-9
  • Kattenborn, T., Lopatin, J., Förster, M., Braun, A. C., & Fassnacht, F. E. (2019). UAV data as alternative to field sampling to map woody invasive species based on combined Sentinel-1 and Sentinel-2 data. Remote Sensing of Environment, 227, 61–73. https://doi.org/10.1016/j.rse.2019.03.025
  • Khoshgoftaar, T. M., Golawala, M., & Van Hulse, J. (2007). An empirical study of learning from imbalanced data using Random Forest. 19th IEEE International Conference on Tools with Artificial Intelligence, 310–317. https://doi.org/10.1109/ICTAI.2007.46
  • Laporte-Fauret, Q., Lubac, B., Castelle, B., Michalet, R., Marieu, V., Bombrun, L., Launeau, P., Giraud, M., Normandin, C., & Rosebery, D. (2020). Classification of Atlantic coastal sand dune vegetation using in situ, UAV, and airborne hyperspectral data. Remote Sensing, 12(14), 2222. https://doi.org/10.3390/rs12142222
  • Laporte-Fauret, Q., Marieu, V., Castelle, B., Michalet, R., Bujan, S., & Rosebery, D. (2019). Low-cost UAV for high-resolution and large-scale coastal dune change monitoring using photogrammetry. Journal of Marine Science and Engineering, 7(3), 63. https://doi.org/10.3390/jmse7030063
  • Lu, B., & He, Y. (2017). Species classification using Unmanned Aerial Vehicle (UAV)-acquired high spatial resolution imagery in a heterogeneous grassland. Isprs Journal of Photogrammetry and Remote Sensing, 128, 73–85. https://doi.org/10.1016/j.isprsjprs.2017.03.011
  • Mack, E. L., Firbank, L. G., Bellamy, P. E., Hinsley, S. A., & Veitch, N. (1997). The comparison of remotely sensed and ground-based habitat area data using species-area models. The Journal of Applied Ecology, 34(5), 1222–1228. https://doi.org/10.2307/2405233
  • Manfreda, S., McCabe, M. F., Miller, P. E., Lucas, R., Madrigal, V. P., Mallinis, G., Dor, E., Ben, H., Estes, D., Ciraolo, L., Müllerová, G., Tauro, J., F de, L., I de, M., Lima, J. L. M. P., Maltese, A., Frances, F., Caylor, K., Kohv, M. … Toth, B. (2018). On the use of unmanned aerial systems for environmental monitoring. Remote Sensing, 10(4), 641. https://doi.org/10.3390/rs10040641
  • Marcinkowska-Ochtyra, A., Gryguc, K., Ochtyra, A., Kopeć, D., Jarocińska, A., & Sławik, Ł. (2019). Multitemporal hyperspectral data fusion with topographic indices—improving classification of Natura 2000 grassland habitats. Remote Sensing, 11(19), 2264. https://doi.org/10.3390/rs11192264
  • Marzialetti, F., Giulio, S., Malavasi, M., Sperandii, M. G., Acosta, A. T. R., & Carranza, M. L. (2019). Capturing coastal dune natural vegetation types using a phenology-based mapping approach: The potential of Sentinel-2. Remote Sensing, 11(12), 1506. https://doi.org/10.3390/rs11121506
  • McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. https://doi.org/10.1080/01431169608948714
  • Mesas-Carrascosa, F. J., Torres-Sánchez, J., Clavero-Rumbao, I., García-Ferrer, A., Peña, J. M., Borra-Serrano, I., & López-Granados, F. (2015). Assessing optimal flight parameters for generating accurate multispectral orthomosaicks by UAV to support site-specific crop management. Remote Sensing, 7(10), 12793–12814. https://doi.org/10.3390/rs71012793
  • Miao, X., Heaton, J. S., Zheng, S., Charlet, D. A., & Liu, H. (2012). Applying tree-based ensemble algorithms to the classification of ecological zones using multi-temporal multi-source remote-sensing data. International Journal of Remote Sensing, 33(6), 1823–1849. https://doi.org/10.1080/01431161.2011.602651
  • Michez, A., Piégay, H., Lisein, J., Claessens, H., & Lejeune, P. (2016). Classification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system. Environmental Monitoring and Assessment, 188, 146. https://doi.org/10.1007/s10661-015-4996-2
  • Muller, A. C., & Guido, S. (2017). Introduction to machine learning with Python: A guide for data scientists. O’Reilly Media Inc.
  • Müllerová, J., Gago, X., Bučas, M., Company, J., Estrany, J., Fortesa, J., Manfreda, S., Michez, A., Mokroš, M., Paulus, G., Tiškus, E., Tsiafouli, M. A., & Kent, R. (2021). Characterizing vegetation complexity with unmanned aerial systems (UAS) – a framework and synthesis. Ecological Indicators, 131, 108156. https://doi.org/10.1016/j.ecolind.2021.108156
  • National Parks and Wildlife Service. (2008). The status of EU protected habitats and species in Ireland. Department of the Environment, Heritage and Local Government.
  • National Parks and Wildlife Service. (2013a). Site synopsis: Tralee Bay and Magharees Peninsula, West to Cloghane SAC. Department of Arts, Heritage and the Gaeltacht.
  • National Parks and Wildlife Service. (2013b). The status of EU protected habitats and species in Ireland. Department of Arts, Heritage and the Gaeltacht.
  • National Parks and Wildlife Service. (2018). Natura 2000 Standard Data Form: Tralee Bay and Magharees Peninsula, West to Cloghane SAC. Department of Arts, Heritage and the Gaeltacht.
  • National Parks and Wildlife Service. (2019). The status of EU protected habitats and species in Ireland. Volume 1: Summary overview. Department of Arts, Heritage and the Gaeltacht.
  • Pajares, G. (2015). Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs). Photogrammetric Engineering and Remote Sensing, 81(4), 281–330. https://doi.org/10.14358/PERS.81.4.281
  • Pal, M. (2005). Random forest classifier for remote sensing classification. International Journal of Remote Sensing, 26(1), 217–222. https://doi.org/10.1080/01431160412331269698
  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
  • Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., & Sorooshian, S. (1994). A modified soil adjusted vegetation index. Remote Sensing of Environment, 48(2), 119–126. https://doi.org/10.1016/0034-4257(94)90134-1
  • Raab, C., Stroh, H. G., Tonn, B., Meißner, M., Rohwer, N., Balkenhol, N., & Isselstein, J. (2018). Mapping semi-natural grassland communities using multi-temporal RapidEye remote sensing data. International Journal of Remote Sensing, 39(17), 5638–5659. https://doi.org/10.1080/01431161.2018.1504344
  • Riihimäki, H., Luoto, M., & Heiskanen, J. (2019). Estimating fractional cover of tundra vegetation at multiple scales using unmanned aerial systems and optical satellite data. Remote Sensing of Environment, 224, 119–132. https://doi.org/10.1016/j.rse.2019.01.030
  • Rouse, J. W., Hass, R. H., Schell, J. A., & Deering, D. W. (1973). Monitoring vegetation systems in the great plains with ERTS. In S.C. Freden, E.P. Mercanti, & M.A. Becker Eds., Third Earth Resources Technology Satellite-1 Symposium: The proceedings of a symposium held by Goddard Space Flight Center at Washington,D. C. on December 10-14 1973 (pp. 309–317). National Aeronautics and Space Administration
  • Schmidt, T., Schuster, C., Kleinschmit, B., & Förster, M. (2014). Evaluating an intra-annual time series for grassland classification - How many acquisitions and what seasonal origin are optimal? IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(8), 3428–3439. https://doi.org/10.1109/JSTARS.2014.2347203
  • Scholefield, P., Morton, D., McShane, G., Carrasco, L., Whitfield, M. G., Rowland, C., Rose, R., Wood, C., Tebbs, E., Dodd, B., & Monteith, D. (2019). Estimating habitat extent and carbon loss from an eroded northern blanket bog using UAV derived imagery and topography. Progress in Physical Geography: Earth and Environment, 43(2), 282–298. https://doi.org/10.1177/0309133319841300
  • Sotille, M. E., Bremer, U. F., Vieira, G., Velho, L. F., Petsch, C., Auger, J. D., & Simões, J. C. (2022). UAV-based classification of maritime Antarctic vegetation types using GEOBIA and random forest. Ecological Informatics, 71, 101768. https://doi.org/10.1016/j.ecoinf.2022.101768
  • Suo, C., McGovern, E., & Gilmer, A. (2019). Coastal dune vegetation mapping using a multispectral sensor mounted on an UAS. Remote Sensing, 11(15), 1814. https://doi.org/10.3390/rs11151814
  • Taddia, Y., Corbau, C., Zambello, E., & Pellegrinelli, A. (2019). UAVs for structure-from-motion coastal monitoring: A case study to assess the evolution of embryo dunes over a two-year time frame in the Po River Delta, Italy. Sensors, 19(7), 1717. https://doi.org/10.3390/s19071717
  • Vanden Borre, J., Haest, B., Lang, S., Spanhove, T., Förster, M., & Sifakis, N. I. (2011). Towards a wider uptake of remote sensing in Natura 2000 monitoring: Streamlining remote sensing products with users’ needs and expectations. 2nd International Conference on Space Technology, ICST 2011, 1–4. https://doi.org/10.1109/ICSpT.2011.6064686
  • van Iersel, W., Straatsma, M., Middelkoop, H., & Addink, E. (2018). Multitemporal classification of river floodplain vegetation using time series of UAV images. Remote Sensing, 10(7), 1144. https://doi.org/10.3390/rs10071144
  • Vilar, P., Morais, T. G., Rodrigues, N. R., Gama, I., Monteiro, M. L., Domingos, T., & Teixeira, R. F. M. (2020). Object-based classification approaches for multitemporal identification and monitoring of pastures in agroforestry regions using multispectral unmanned aerial vehicle products. Remote Sensing, 12(5), 814. https://doi.org/10.3390/rs12050814
  • Villoslada, M., Bergamo, T. F., Ward, R. D., Burnside, N. G., Joyce, C. B., Bunce, R. G. H., & Sepp, K. (2020). Fine scale plant community assessment in coastal meadows using UAV based multispectral data. Ecological Indicators, 111, 105979. https://doi.org/10.1016/j.ecolind.2019.105979
  • Ward, R. D., Burnside, N. G., Joyce, C. B., & Sepp, K. (2013). The use of medium point density LiDAR elevation data to determine plant community types in Baltic coastal wetlands. Ecological Indicators, 33, 96–104. https://doi.org/10.1016/j.ecolind.2012.08.016
  • Wood, E. M., Pidgeon, A. M., Radeloff, V. C., & Keuler, N. S. (2012). Image texture as a remotely sensed measure of vegetation structure. Remote Sensing of Environment, 121, 516–526. https://doi.org/10.1016/j.rse.2012.01.003
  • Wood, D. J. A., Preston, T. M., Powell, S., & Stoy, P. C. (2022). Multiple UAV flights across the growing season can characterize fine scale phenological heterogeneity within and among vegetation functional groups. Remote Sensing, 14(5), 1290. https://doi.org/10.3390/rs14051290
  • Xue, J., & Su, B. (2017). Significant remote sensing vegetation indices: A review of developments and applications. Journal of Sensors, 2017, 1353691. https://doi.org/10.1155/2017/1353691
  • Yan, L., Gou, Z., & Duan, Y. (2009). A UAV remote sensing system: Design and tests. In D. Li, J. Shan, & J. Gong (Eds.), Geospatial technology for earth observation (pp. 27–44). Springer Science & Business Media. https://doi.org/10.1007/978-1-4419-0050-0
  • Yousefi Lalimi, F., Silvestri, S., Moore, L. J., & Marani, M. (2017). Coupled topographic and vegetation patterns in coastal dunes: Remote sensing observations and ecomorphodynamic implications. Journal of Geophysical Research: Biogeosciences, 122(1), 119–130. https://doi.org/10.1002/2016JG003540