1,481
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Capturing deprived areas using unsupervised machine learning and open data: a case study in São Paulo, Brazil

, , &
Article: 2214690 | Received 03 Dec 2022, Accepted 12 May 2023, Published online: 19 May 2023

References

  • Abascal, Á., Rothwell, N., Shonowo, A., Thomson, D., Elias, P., Elsey, H., Yeboah, G., & Kuffer, M. (2021, March). “Domains of deprivation framework” for mapping slums, informal settlements, and other deprived areas in LMICs to improve Urban planning and policy: A scoping review. Preprints, 1–23. https://doi.org/10.20944/preprints202102.0242.v1
  • Ajami, A., Kuffer, M., Persello, C., & Pfeffer, K. (2019). Identifying a slums’ degree of deprivation from VHR images using convolutional neural networks. Remote Sensing, 11(11), 1282. https://doi.org/10.3390/rs11111282
  • Alelyani, S., Tang, J., & Liu, H. (2014). Feature selection for clustering: A review. In Aggarwal, Charu C., Reddy, Chandan K. (Ed.), Data Clustering - Algorithms and Applications 1st ed., Chapman and Hall/CRC. 9781315373515 .
  • Bastos da Cunha, M., Firpo de Souza Porto, M., Pivetta, F., Zancan, L., Santos Francisco, M., Brum Pinheiro, A., Melo Souza, F., & Calazans, R. (2015). O desastre no cotidiano da favela: reflexões a partir de três casos no Rio de Janeiro [An everyday disaster in favela: reflections based on three cases in Rio de Janeiro]. O Social Em Questão, 33, 95–122.
  • Bhuyan, K., Westen, C. V., Wang, J., & Raj, S. (2022). Mapping and characterising buildings for flood exposure analysis using open ‑ source data and artificial intelligence. In Natural Hazards Issue 0123456789. Springer Netherlands. https://doi.org/10.1007/s11069-022-05612-4
  • Brito, P. L., Ku, M., Koeva, M., Pedrassoli, J. C., Wang, J., Costa, F., & Freitas, A. D. D. (2020). The spatial dimension of COVID-19: The potential of earth observation data in support of slum communities with evidence from Brazil. ISPRS International Journal of Geo-Information, 9(9), 557. https://doi.org/10.3390/ijgi9090557
  • Cai, D., Zhang, C., & He, X. (2010). Unsupervised feature selection for multi-cluster data. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 333–342. https://doi.org/10.1145/1835804.1835848
  • Campello, R. J. G. B., Moulavi, D., & Sander, J. (2013). Density-based clustering based on hierarchical density estimates. In J. Pei, V.S. Tseng, L. Cao, H. Motoda, & G. Xu (Eds.), Advances in knowledge discovery and data mining (Vol. 7819, pp. 160–172). Springer. https://doi.org/10.1007/978-3-642-37456-2_14
  • Chiang, M. M. T., & Mirkin, B. (2010). Intelligent choice of the number of clusters in k-means clustering: An experimental study with different cluster spreads. Journal of Classification, 27(1), 3–40. https://doi.org/10.1007/s00357-010-9049-5
  • da Fonseca Feitosa, F., Vieira Vasconcelos, V., Moutinho Duque de Pinho, C., Frizzi Galdino da Silva, G., da Silva Gonçalves, G., Correa Danna, L. C., & Seixas Lisboa, F. (2021). IMMerSe: An integrated methodology for mapping and classifying precarious settlements. Applied Geography, 133, 102494. https://doi.org/10.1016/J.APGEOG.2021.102494
  • Dos Santos, B. D., de Pinho, C. M. D., Oliveira, G. E. T., Korting, T. S., Escada, M. I. S., & Amaral, S. (2022). Identifying precarious settlements and Urban fabric typologies based on GEOBIA and data mining in Brazilian amazon cities. Remote Sensing, 14(3), 704. https://doi.org/10.3390/RS14030704
  • Duque, J. C., Patino, J. E., & Betancourt, A. (2017). Exploring the potential of machine learning for automatic slum identification from VHR imagery. Remote Sensing, 9(9), 1–23. https://doi.org/10.3390/rs9090895
  • Ebert, A., Kerle, N., & Stein, A. (2009). Urban social vulnerability assessment with physical proxies and spatial metrics derived from air- and spaceborne imagery and GIS data. Nat Hazards, 48(2), 275–294. 10.1007/s11069-008-9264-0
  • Eckle, M., De Albuquerque, J. P., Herfort, B., Zipf, A., Leiner, R., Wolff, R., & Jacobs, C. (2016). Leveraging OpenStreetMap to support flood risk management in municipalities: A prototype decision support system. Proceedings of the International ISCRAM Conference Krystiansand, Norway, May.
  • Ferreira, N. D. J., & Feitosa, F. D. F. (2020). Cartografias das Favelas : Uma Análise Comparativa. In Pandemia e Cotidiano, 5, I Seminário Nacional – Urbanismo, Espaço e Tempo. Cidade.
  • Fränti, P., & Sieranoja, S. (2019). How much can k-means be improved by using better initialization and repeats? Pattern Recognition, 93, 95–112. https://doi.org/10.1016/j.patcog.2019.04.014
  • Frazier, A E., & Kedron, P. (2017). Landscape Metrics: Past Progress and Future Directions. Curr Landscape Ecol Rep, 2(3), 63–72. 10.1007/s40823-017-0026-0
  • Geiß, C., Schauß, A., Riedlinger, T., Dech, S., Zelaya, C., Guzmán, N., Hube, M. A., Arsanjani, J. J., & Taubenböck, H. (2017). Joint use of remote sensing data and volunteered geographic information for exposure estimation: Evidence from Valparaíso, Chile. Natural Hazards, 86(S1), 81–105. https://doi.org/10.1007/s11069-016-2663-8
  • Gevaert, C. M., Kohli, D., & Kuffer, M. (2019, May). Challenges of mapping the missing spaces. 2019 Joint Urban Remote Sensing Event, JURSE 2019, 2019–2022. https://doi.org/10.1109/JURSE.2019.8809004
  • Ghaffarian, S., Kerle, N., & Filatova, T. (2018). Remote sensing-based proxies for Urban disaster risk management and resilience: A review. Remote Sensing, 10(11), 1760. https://doi.org/10.3390/rs10111760
  • Gram-Hansen, B. J., Helber, P., Coca-Castro, A., Kopackova, V., & Bilinski, P. (2019). Mapping informal settlements in developing countries using machine learning and low resolution multi-spectral data AAAI/ACM Conference on AI, Ethics, and Society (AIES ’19) January 27–28, 2019 Honolulu, HI, USA. 361–368.
  • Hall-Beyer, M. (2017). Practical guidelines for choosing GLCM textures to use in landscape classification tasks over a range of moderate spatial scales Practical guidelines for choosing GLCM textures to use in. International Journal of Remote Sensing, 38(5), 1312–1338. https://doi.org/10.1080/01431161.2016.1278314
  • Han, J., Kamber, M., & Pei, J. (2012). Cluster analysis: Basic concepts and methods. In Data Mining 3rd, (pp. 443–495). https://doi.org/10.1016/B978-0-12-381479-1.00010-1
  • IBGE. (2010, August). SP Capital. Censo Demográfico.
  • Instituto Brasileiro de Geografia e Estatística (IBGE). (2019). Aglomerados Subnormais IBGE. https://ibge.gov.br/geociencias/organizacao-do-territorio/tipologias-do-territorio/15788-aglomerados-subnormais.html
  • Jochem, W. C., Leasure, D. R., Pannell, O., Chamberlain, H. R., Jones, P., & Tatem, A. J. (2020). Classifying settlement types from multi-scale spatial patterns of building footprints. Environment & Planning B: Urban Analytics & City Science, 48(5), 1–19. https://doi.org/10.1177/2399808320921208
  • Karmitsa, N., Bagirov, A. M., & Taheri, S. (2018). Clustering in large data sets with the limited memory bundle method. Pattern Recognition, 83, 245–259. https://doi.org/10.1016/j.patcog.2018.05.028
  • Kit, O., Lüdeke, M., & Reckien, D. (2012). Texture-based identification of urban slums in Hyderabad, India using remote sensing data. Applied Geography, 32(2), 660–667. https://doi.org/10.1016/j.apgeog.2011.07.016
  • Kohli, D., Sliuzas, R., Kerle, N., & Stein, A. (2012). Computers, environment and Urban systems an ontology of slums for image-based classification. Computers, Environment and Urban Systems, 36(2), 154–163. https://doi.org/10.1016/j.compenvurbsys.2011.11.001
  • Kohli, D., Stein, A., & Sliuzas, R. (2016). Uncertainty analysis for image interpretations of urban slums. Computers, Environment and Urban Systems, 60, 37–49. https://doi.org/10.1016/j.compenvurbsys.2016.07.010
  • Kohli, D., Warwadekar, P., Kerle, N., Sliuzas, R., & Stein, A. (2013). Transferability of object-oriented image analysis methods for slum identification. Remote Sensing, 5(9), 4209–4228. May 2014. https://doi.org/10.3390/rs5094209
  • Kuffer, M., Pfeffer, K., Baud, I., & Sliuzas, R. (2013). Analysing sub-standard areas using high resolution remote (VHR) sensing imagery, N-AERUS XIV, Enschede, 12 - 14th September 2013. https://ris.utwente.nl/ws/portalfiles/portal/30133835/Kuffer2013analysing.pdf
  • Kuffer, M., Pfeffer, K., Sliuzas, R., & Baud, I. (2016). Extraction of slum areas from VHR imagery using GLCM variance. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 9(5), 1830–1840. https://doi.org/10.1109/JSTARS.2016.2538563
  • Kuffer, M., Thomson, D. R., Boo, G., Mahabir, R., Grippa, T., Vanhuysse, S., Engstrom, R., Ndugwa, R., Makau, J., Darin, E., de Albuquerque, J. P., & Kabaria, C. (2020). The role of earth observation in an integrated deprived area mapping “system” for low-to-middle income countries. Remote Sensing, 12(6), 982. https://doi.org/10.3390/rs12060982
  • Leonita, G., Kuffer, M., Sliuzas, R., & Persello, C. (2018). Machine learning-based slum mapping in support of slum upgrading programs: The case of Bandung City, Indonesia. Remote Sensing, 10(10), 1522. https://doi.org/10.3390/rs10101522
  • Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P., Tang, J., & Liu, H. (2017). Feature selection: A data perspective. ACM Computing Surveys, 50(6), 1–45. https://doi.org/10.1145/3136625
  • Lilford, R., Kyobutungi, C., Ndugwa, R., Sartori, J., Watson, S I., Sliuzas, R., Kuffer, M., Hofer, T., Porto de Albuquerque, J, & Ezeh, A. (2019). Because space matters: conceptual framework to help distinguish slum from non-slum urban areas. BMJ Glob Health, 4(2), e001267 10.1136/bmjgh-2018-001267
  • Lucci, P., Bhatkal, T., & Khan, A. (2018). Are we underestimating urban poverty? World Development, 103, 297–310. doi:10.1016/j.worlddev.2017.10.022
  • Luo, E., Kuffer, M., & Wang, J. (2022). Urban poverty maps - from characterising deprivation using geo-spatial data to capturing deprivation from space. Sustainable Cities and Society, 84(July), 104033. https://doi.org/10.1016/j.scs.2022.104033
  • Madhulatha, T. S. (2012). An overview on clustering methods. IOSR Journal of Engineering, 2(4), 719–725. https://doi.org/10.9790/3021-0204719725
  • Mahabir, R., Agouris, P., Stefanidis, A., Croitoru, A., & Crooks, A. T. (2020). Detecting and mapping slums using open data: A case study in Kenya. International Journal of Digital Earth, 13(6), 683–707. https://doi.org/10.1080/17538947.2018.1554010
  • Martínez, J., Pfeffer, K., & Baud, I. (2016). Factors shaping cartographic representations of inequalities. Maps as products and processes. Habitat International, 51, 90–102. https://doi.org/10.1016/j.habitatint.2015.10.010
  • Martino, A., Rizzi, A., & Mascioli, F. M. F. (2017). Efficient approaches for solving the large-scale k-medoids problem. IJCCI 2017 - Proceedings of the 9th International Joint Conference on Computational Intelligence, Ijcci, 338–347. https://doi.org/10.5220/0006515003380347
  • McInnes, L., Healy, J., & Astels, S. (2016). The HDBSCAN Clustering Library. IBM.
  • Merodio, P., Jimena, O., Carrillo, J., Kuffer, M., Thomson, D. R., Luis, J., Quiroz, O., Villaseñor, E., Vanhuysse, S., Abascal, Á., Oluoch, I., Nagenborg, M., Persello, C., & Brito, P. L. (2021). Earth observations and statistics: Unlocking sociodemographic knowledge through the power of satellite images. Sustainability, 13(22), 12640. https://doi.org/10.3390/su132212640
  • Nobrega, R. A. A., Hara, C. G. O., & Quintanilha, J. A. (2008). An object-based approach to detect road features for informal settlements near Sao Paulo , Brazil. In Object-Based Image Analysis. Lecture Notes in Geoinformation and Cartography. Springer 978-3-540-77058-9, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77058-9_32
  • Nugrahita, R., & Surjandari, I. (2020). Identify product families using cluster analysis: Case study in Passenger Car Radial (PCR) tire product. IOP Conference Series: Materials Science and Engineering PAPER. https://doi.org/10.1088/1757-899X/909/1/012057
  • Olthuis, K., Benni, J., Eichwede, K., & Zevenbergen, C. (2015). Slum upgrading: Assesing the importance of location and a plea for a spatial approach. Habitat International, 50, 270–288. https://doi.org/10.1016/j.habitatint.2015.08.033
  • Owen, K. K., & Wong, D. W. (2013). An approach to differentiate informal settlements using spectral, texture, geomorphology and road accessibility metrics. Applied Geography, 38, 107–118. https://doi.org/10.1016/j.apgeog.2012.11.016
  • Pasternak, S., & D’Ottaviano, C. (2016). Favelas no Brasil e em São Paulo: avanços nas análises a partir da Leitura Territorial do Censo de 2010*. Cadernos Metrópole, 18(35), 75–100. https://doi.org/10.1590/2236-9996.2016-3504
  • Patel A, Koizumi, N., & Crooks, A. (2014). Measuring slum severity in Mumbai and Kolkata: A household-based approach. Habitat International, 41, 300–306. 10.1016/j.habitatint.2013.09.002
  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). 2.3. Clustering — scikit-learn 0.24.2 documentation. Machine Learning in Python.
  • Pfaffel, O. (2021). Feature importance for partitional clustering (0.1.4). CRAN.
  • Roy, D., Bernal, D., & Lees, M. (2020). An exploratory factor analysis model for slum severity index in Mexico City. Urban Studies, 57(4), 789–805. https://doi.org/10.1177/0042098019869769
  • Sliuzas, R., Kuffer, M., & Masser, I. (2010). The Spatial and Temporal Nature of Urban Objects. In C. Jürgens & T. Rashed (Eds.), Remote Sensing of Urban and Suburban Areas. Springer Science+Business Media. https://doi.org/10.1007/978-1-4020-4385-7
  • Small, C. (2014). Mapping urban growth and development as continuous fields in space and time. Geography Department University of Sao Paulo, 1(spe), 155–179. https://doi.org/10.11606/rdg.v0i0.555
  • Taubenböck, H., & Kraff, N. J. (2014). The physical face of slums: A structural comparison of slums in Mumbai, India, based on remotely sensed data. Journal of Housing and the Built Environment, 29(1), 15–38. https://doi.org/10.1007/s10901-013-9333-x
  • Taubenböck H, Kraff N & Wurm M. (2018). The morphology of the Arrival City - A global categorization based on literature surveys and remotely sensed data. Applied Geography, 92, 150–167. 10.1016/j.apgeog.2018.02.002
  • Taubenböck, H., Kra, N. J., & Wurm, M. (2018). The morphology of the arrival city - a global categorization based on literature surveys and remotely sensed data. Applied Geography, 92(February), 150–167. https://doi.org/10.1016/j.apgeog.2018.02.002
  • Thomson, D. R., Kuffer, M., Boo, G., Hati, B., Grippa, T., Elsey, H., Linard, C., Mahabir, R., Kyobutungi, C., Maviti, J., Mwaniki, D., Ndugwa, R., Makau, J., Sliuzas, R., Cheruiyot, S., Nyambuga, K., Mboga, N., Kimani, N. W., de Albuquerque, J. P., & Kabaria, C. (2020). Need for an Integrated Deprived Area “Slum” Mapping System (IDEAMAPS) in Low- and Middle-Income Countries (LMICs). Social Sciences, 9(5), 80. https://doi.org/10.3390/socsci9050080
  • Thrun, M. C., Ultsch, A., & Breuer, L. (2021). Explainable AI framework for multivariate hydrochemical time series Machine Learning and Knowledge Extraction. 3. February. 1–29. doi:10.3390/make3010009
  • Trento Oliveira, L. (2021). The diversity of deprived areas: Applications of unsupervised machine learning and open geodata (Issue August) [University of Twente]. https://essay.utwente.nl/88986/
  • UN-Habitat. (2016). World Cities Report 2016: Urbanization and Development–Emerging Futures. In UN-Habitat (Nairobi, Kenya)Accessed 11 07 2022 . Available online: https://unhabitat.org/world-cities-report-2016
  • Van Dijk, M., Moorthy, I., Nguyen, B., See, L., & Fritz, S. (2019). Tracking poverty using satellite imagery and big data. The International Institute for Applied Systems Analysis, December, 1–16. http://pure.iiasa.ac.at/id/eprint/16240/
  • Wang, J., Kuffer, M., & Pfeffer, K. (2019). The role of spatial heterogeneity in detecting urban slums. Computers, Environment and Urban Systems, 73(April 2018), 95–107. https://doi.org/10.1016/j.compenvurbsys.2018.08.007
  • Wurm, M., Taubenböck, H., Weigand, M., & Schmitt, A. (2017). Remote sensing of environment slum mapping in polarimetric SAR data using spatial features. Remote Sensing of Environment, 194, 190–204. https://doi.org/10.1016/j.rse.2017.03.030
  • Yeboah, G., de Albuquerque, J. P., Troilo, R., Tregonning, G., Perera, S., Shifat Ahmed, S. A. K., Ajisola, M., Alam, O., Aujla, N., Azam, S. I., Azeem, K., Bakibinga, P., Chen, Y. F., Choudhury, N. N., Diggle, P. J., Fayehun, O., Gill, P., Griffiths, F., Harris, B., Yusuf, R. … Yusuf, R. (2021). Analysis of openstreetmap data quality at different stages of a participatory mapping process: Evidence from slums in Africa and Asia. ISPRS International Journal of Geo-Information, 10(4), 265. https://doi.org/10.3390/ijgi10040265