727
Views
1
CrossRef citations to date
0
Altmetric
Research Article

High-resolution monitoring of landslides with UAS photogrammetry and digital image correlation

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2216361 | Received 27 Dec 2022, Accepted 17 May 2023, Published online: 02 Jun 2023

References

  • Angeli, M. -G., Pasuto, A., & Silvano, S. (2000). A critical review of landslide monitoring experiences. Engineering Geology, 55(3), 133–13. https://doi.org/10.1016/S0013-7952(99)00122-2
  • Antonello, G., Fortuny, J., Tarchi, D., Casagli, N., Del Ventisette, C., Guerri, L., Luzi, G., Mugnai, F., & Leva, D. (2008). Microwave interferometric sensors as a tool for space and time analysis of active volcano deformations: The Stromboli case. Use of Remote Sensing Techniques for Monitoring Volcanoes and Seismogenic Areas, 2008. USEReST 2008. Second Workshop On, Napoli, Italy, 1–6.
  • Baroň, I., & Supper, R. (2013). Application and reliability of techniques for landslide site investigation, monitoring and early warning–outcomes from a questionnaire study. Natural Hazards and Earth System Sciences, 13(12), 3157–3168. https://doi.org/10.5194/nhess-13-3157-2013
  • Bellotti, F., Bianchi, M., Colombo, D., Ferretti, A., & Tamburini, A. (2014). Advanced InSAR techniques to support landslide monitoring. In E. Pardo-Igúzquiza, C. Guardiola-Albert, J. Heredia, L. Moreno-Merino, J. J. Durán, & J. A. Vargas-Guzmán (Eds.), Mathematics of planet earth (pp. 287–290). Springer.
  • Bickel, V. T., Manconi, A., & Amann, F. (2018). Quantitative assessment of digital image correlation methods to detect and monitor surface displacements of large slope instabilities. Remote Sensing, 10(6), 865. https://doi.org/10.3390/rs10060865
  • Blasone, G., Cavalli, M., Marchi, L., & Cazorzi, F. (2014). Monitoring sediment source areas in a debris-flow catchment using terrestrial laser scanning. Catena, 123, 23–36. https://doi.org/10.1016/j.catena.2014.07.001
  • Borgatti, L., Corsini, A., Barbieri, M., Sartini, G., Truffelli, G., Caputo, G., & Puglisi, C. (2006). Large reactivated landslides in weak rock masses: A case study from the Northern Apennines (Italy). Landslides, 3(2), 115–124. https://doi.org/10.1007/s10346-005-0033-9
  • Cefalo, R., Cociancich, A., Iansig, M., Montagner, G., DiBartolomeo, M., Ferro, F., & Manzoni, G. (2011). “Paleo-environmental Researches on Aquileia territory in the ancient times” View project integrated topographic, GNSS, remote sensing and GIS/WebGIS Techniques Applied to the Study of Aquileia River Port Structures. https://www.researchgate.net/publication/221333492
  • Cervi, F., Ronchetti, F., Martinelli, G., Bogaard, T. A., & Corsini, A. (2012). Origin and assessment of deep groundwater inflow in the Ca’ Lita landslide using hydrochemistry and in situ monitoring. Hydrology and Earth System Sciences, 16(11), 4205–4221. https://doi.org/10.5194/hess-16-4205-2012
  • Crosta, G. B., Agliardi, F., Rivolta, C., Alberti, S., & Dei Cas, L. (2017). Long-term evolution and early warning strategies for complex rockslides by real-time monitoring. Landslides, 14(5), 1615–1632. https://doi.org/10.1007/s10346-017-0817-8
  • Cruden, D. M., Varnes, D. J., Cruden, D. M., Varnes, D. J. (1993). 1996, landslide types and processes, transportation research board, us national academy of sciences, special report, 247: 36-75. Landslides and Engineering Practice, 1(24), 20–47.
  • DiMatteo, L., Romeo, S., & Kieffer, D. S. (2017). Rock fall analysis in an Alpine area by using a reliable integrated monitoring system: Results from the Ingelsberg slope (Salzburg Land, Austria). Bulletin of Engineering Geology and the Environment, 76(2), 413–420. https://doi.org/10.1007/s10064-016-0980-5
  • Google Earth. (2021). Google Earth. earth.google.com
  • Hoyt, K., Forsberg, F., & Ophir, J. (2006). Comparison of shift estimation strategies in spectral elastography. Ultrasonics, 44(1), 99–108. https://doi.org/10.1016/j.ultras.2005.08.006
  • Hsieh, C. -C., Huang, Y. -P., Ho, W. C., Fuh, C. -S., Bickel, V. T., Manconi, A., & Amann, F. (2008). Video super-resolution by integrating sad and ncc matching criterion for multiple moving objects. Proceedings of IASTED International Conference on Computer Graphics and Imaging, Innsbruck, Austria, 10(6)
  • Hungr, O., Leroueil, S., & Picarelli, L. (2014). The Varnes classification of landslide types, an update. Landslides, 11(2), 167–194. https://doi.org/10.1007/s10346-013-0436-y
  • HxGN. (2022). HxGN. https://hxgnsmartnet.com/it-it
  • Lazecký, M., Çomut, F. C., Hlaváčová, I., & Gürboğa, Ş. (2015). Practical application of satellite-based SAR interferometry for the detection of landslide activity. Procedia Earth and Planetary Science, 15, 613–618. https://doi.org/10.1016/j.proeps.2015.08.113
  • Leva, D., Nico, G., Tarchi, D., Fortuny-Guasch, J., & Sieber, A. J. (2003). Temporal analysis of a landslide by means of a ground-based SAR interferometer. IEEE Transactions on Geoscience & Remote Sensing, 41(4), 745–752. https://doi.org/10.1109/TGRS.2003.808902
  • Lindner, G., Schraml, K., Mansberger, R., & Hübl, J. (2016). UAV monitoring and documentation of a large landslide. Applied Geomatics, 8(1), 1–11. https://doi.org/10.1007/s12518-015-0165-0
  • Lucieer, A., Jong, S. M., & Turner, D. (2014). Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography. Progress in Physical Geography, 38(1), 97–116. https://doi.org/10.1177/0309133313515293
  • Luzi, G., Pieraccini, M., Mecatti, D., Noferini, L., Guidi, G., Moia, F., & Atzeni, C. (2004). Ground-based radar interferometry for landslides monitoring: Atmospheric and instrumental decorrelation sources on experimental data. IEEE Transactions on Geoscience & Remote Sensing, 42(11), 2454–2466. https://doi.org/10.1109/TGRS.2004.836792
  • McCormick, N., & Lord, J. (2010). Digital image correlation. Materials Today, 13(12), 52–54. https://doi.org/10.1016/S1369-7021(10)70235-2
  • Mikolajczak, G., & Peksinski, J. (2016). Estimation of the variance of noise in digital images using a median filter. 2016 39th International Conference on Telecommunications and Signal Processing (TSP), Wien, Austira, 489–492.
  • Milan, D. J., Heritage, G. L., Large, A. R. G., & Fuller, I. C. (2011). Filtering spatial error from DEMs: Implications for morphological change estimation. Geomorphology, 125(1), 160–171. https://doi.org/10.1016/j.geomorph.2010.09.012
  • Mucchi, L., Jayousi, S., Martinelli, A., Caputo, S., Intrieri, E., Gigli, G., Gracchi, T., Mugnai, F., Favalli, M., & Fornaciai, A. (2018). A flexible wireless sensor network based on ultra-wide band technology for ground instability monitoring. Sensors, 18(9), 2948. https://doi.org/10.3390/s18092948
  • Mulas, M., Ciccarese, G., Truffelli, G., & Corsini, A. (2020a). Displacements of an active moderately rapid landslide—A dataset retrieved by continuous GNSS arrays. Data, 5(3), 1–6. https://doi.org/10.3390/data5030071
  • Mulas, M., Ciccarese, G., Truffelli, G., & Corsini, A. (2020b). Integration of digital image correlation of sentinel-2 data and continuous GNSS for long-term slope movements monitoring in moderately rapid landslides. Remote Sensing, 12(16), 1–17. https://doi.org/10.3390/RS12162605
  • Notti, D., Davalillo, J. C., Herrera, G., & Mora, O. (2010). Assessment of the performance of X-band satellite radar data for landslide mapping and monitoring: Upper Tena Valley case study. Natural Hazards and Earth System Sciences, 10(9), 1865–1875. https://doi.org/10.5194/nhess-10-1865-2010
  • Oppenheim, A. V., & Schafer, R. (1975). Digital Signal Processing. Prentice-Hall.
  • Pan, B., Xie, H., Wang, Z., Qian, K., & Wang, Z. (2008). Study on subset size selection in digital image correlation for speckle patterns. Optics Express, 16(10), 7037–7048. https://doi.org/10.1364/OE.16.007037
  • Pieraccini, M., & Miccinesi, L. (2019). Ground-based radar interferometry: A bibliographic review. Remote Sensing, 11(9), 1029. https://doi.org/10.3390/rs11091029
  • Puniach, E., Gruszczyński, W., Ćwiąkała, P., & Matwij, W. (2021). Application of UAV-based orthomosaics for determination of horizontal displacement caused by underground mining. Isprs Journal of Photogrammetry & Remote Sensing, 174, 282–303. https://doi.org/10.1016/j.isprsjprs.2021.02.006
  • Sestras, P., Bilașco, Ș., Roșca, S., Dudic, B., Hysa, A., & Spalević, V. (2021). Geodetic and UAV Monitoring in the Sustainable Management of Shallow Landslides and Erosion of a Susceptible Urban Environment. Remote Sensing, 13(3), 385. https://doi.org/10.3390/rs13030385
  • Shi, B., & Liu, C. (2015). UAV for landslide mapping and deformation analysis. International Conference on Intelligent Earth Observing and Applications 2015, Guilin, China, 9808, 98080P.
  • Strozzi, T., Delaloye, R., Kääb, A., Ambrosi, C., Perruchoud, E., & Wegmüller, U. (2010). Combined observations of rock mass movements using satellite SAR interferometry, differential GPS, airborne digital photogrammetry, and airborne photography interpretation. Journal of Geophysical Research: Earth Surface, 115(F1)
  • Sutton, M. A., Matta, F., Rizos, D., Ghorbani, R., Rajan, S., Mollenhauer, D. H., Schreier, H. W., & Lasprilla, A. O. (2017). Recent progress in digital image correlation: Background and developments since the 2013 WM Murray Lecture. Experimental Mechanics, 57(1), 1–30. https://doi.org/10.1007/s11340-016-0233-3
  • Taddia, Y., Corbau, C., Zambello, E., & Pellegrinelli, A. (2019). UAVs for structure-from-motion coastal monitoring: A case study to assess the evolution of embryo dunes over a two-year time frame in the Po River Delta, Italy. Sensors, 19(7), 1717. https://doi.org/10.3390/s19071717
  • Turner, D., Lucieer, A., & de Jong, S. M. (2015). Time series analysis of landslide dynamics using an Unmanned Aerial Vehicle (UAV). Remote Sensing, 7(2), 1736–1757. https://doi.org/10.3390/rs70201736
  • Turrisi, S. (2017). Motion blur compensation to improve the accuracy of Digital Image Correlation measurements. Politecnico di Milano.
  • Wasowski, J., & Bovenga, F. (2022). Remote sensing of landslide motion with emphasis on satellite multi-temporal interferometry applications: An overview. Landslide Hazards, Risks, and Disasters, 2(11), 365–438.