523
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Estimation of the occurrence, severity, and volume of heartwood rot using airborne laser scanning and optical satellite data

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2229501 | Received 06 Jan 2023, Accepted 21 Jun 2023, Published online: 04 Jul 2023

References

  • Abdullah, H., Skidmore, A. K., Darvishzadeh, R., Heurich, M., Pettorelli, N., & Disney, M. (2019). Sentinel-2 accurately maps green-attack stage of European spruce bark beetle (Ips typographus L.) compared with Landsat-8. Remote Sensing in Ecology and Conservation, 5(1), 87–16. https://doi.org/10.1002/rse2.93
  • Allen, B., Dalponte, M., Hietala, A., Ørka, H. O., Næsset, E., & Gobakken, T. (2022a). Detection of root, butt, and stem rot presence in Norway spruce with hyperspectral imagery. Silva Fennica, 56(2). https://doi.org/10.14214/sf.10606
  • Allen, B., Dalponte, M., Ørka, H. O., Næsset, E., Puliti, S., Astrup, R., & Gobakken, T. (2022b). UAV-based hyperspectral imagery for detection of root, butt, and stem rot in Norway Spruce. Remote Sensing, 14(15), 16. https://doi.org/10.3390/rs14153830
  • Baret, F., & Guyot, G. (1991). Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sensing of Environment, 35(2), 161–173. https://doi.org/10.1016/0034-4257(91)90009-U
  • Barnes, E. M., Clarke, T. R., Richards, S. E., Colaizzi, P. D., Haberland, J., Kostrzewski, M., Waller, P., Choi, C., Riley, E., Thompson, T., Lascano, R. J., Li, H., Moran, M. S. (2000). Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data. Proceedings of the Fifth International Conference on Precision Agriculture, Bloomington, MN, USA, 1619, 6.
  • Bárta, V., Lukeš, P., & Homolová, L. (2021). Early detection of bark beetle infestation in Norway spruce forests of Central Europe using Sentinel-2. International Journal of Applied Earth Observation and Geoinformation, 100, 102335. https://doi.org/10.1016/j.jag.2021.102335
  • Biau, G., & Scornet, E. (2016). A random forest guided tour. Test, 25(2), 197–227. https://doi.org/10.1007/s11749-016-0481-7
  • Birth, G. S., & McVey, G. R. (1968). Measuring the color of growing turf with a reflectance spectrophotometer 1. Agronomy Journal, 60(6), 640–643. https://doi.org/10.2134/agronj1968.00021962006000060016x
  • Braastad, H. (1966). Volume tables for birch. Meddelelser Fra Det Norske Skogforsøksvesen, 21, 265–365. https://hdl.handle.net/11250/2988596
  • Brantseg, A. (1967). Volume functions and tables for scots pine South Norway. Meddelelser Fra Det Norske Skogforsøksvesen, 22, 695–739. https://hdl.handle.net/11250/2988611
  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
  • Camps-Valls, G., Campos-Taberner, M., Moreno-Martínez, Á., Walther, S., Duveiller, G., Cescatti, A., Mahecha, M. D., Muñoz-Marí, J., García-Haro, F. J., Guanter, L., Jung, M., Gamon, J. A., Reichstein, M., & Running, S. W. (2021). A unified vegetation index for quantifying the terrestrial biosphere. Science Advances, 7(9). https://doi.org/10.1126/sciadv.abc7447
  • Collison, A., Jumpasut, A., & Bourne, H. (2021). On-Orbit Radiometric Calibration of the planet satellite fleet. https://assets.planet.com/docs/radiometric_calibration_white_paper.pdf
  • Coomes, D. A., Dalponte, M., Jucker, T., Asner, G. P., Banin, L. F., Burslem, D. F. R. P., Lewis, S. L., Nilus, R., Phillips, O. L., Phua, M.-H., & Qie, L. (2017). Area-based vs tree-centric approaches to mapping forest carbon in Southeast Asian forests from airborne laser scanning data. Remote Sensing of Environment, 194, 77–88. https://doi.org/10.1016/j.rse.2017.03.017
  • Dalponte, M., Kallio, A. J. I., Ørka, H. O., Næsset, E., & Gobakken, T. (2022a). Wood decay detection in Norway spruce forests based on airborne hyperspectral and ALS data. Remote Sensing, 14(8), 15. https://doi.org/10.3390/rs14081892
  • Dalponte, M., Reyes, F., Kandare, K., & Gianelle, D. (2015). Delineation of individual tree crowns from ALS and hyperspectral data: A comparison among four methods. European Journal of Remote Sensing, 48(1), 365–382. https://doi.org/10.5721/EuJRS20154821
  • Dalponte, M., Solano-Correa, Y. T., Ørka, H. O., Gobakken, T., & Næsset, E. (2022b). Detection of heartwood rot in Norway spruce trees with lidar and multi-temporal satellite data. International Journal of Applied Earth Observation and Geoinformation, 109, 11. https://doi.org/10.1016/j.jag.2022.102790
  • Dash, J., & Curran, P. J. (2004). The MERIS terrestrial chlorophyll index. International Journal of Remote Sensing, 25(23), 5403–5413. https://doi.org/10.1080/0143116042000274015
  • Deering, D. W. (1975, October 6).Measuring forage production of grazing units from Landsat MSS data. Proceedings of 10th International Symposium on Remote Sensing of Environment, Ann Arbor, MI, USA, 1975, 1169–1178.
  • Frazier, A. E., & Hemingway, B. L. (2021). A technical review of planet smallsat data: practical considerations for processing and using PlanetScope imagery. Remote Sensing, 13(19), 3930. https://doi.org/10.3390/rs13193930
  • Gao, B.-C. (1996). NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257–266. https://doi.org/10.1016/S0034-42579600067-3
  • Garbelotto, M., & Gonthier, P. (2013). Biology, epidemiology, and control of Heterobasidion species worldwide. Annual Review of Phytopathology, 51(1), 39–59. https://doi.org/10.1146/annurev-phyto-082712-102225
  • Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58(3), 289–298. https://doi.org/10.1016/S0034-42579600072-7
  • Gitelson, A., & Merzlyak, M. N. (1994). Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. Journal of Photochemistry and Photobiology B, Biology, 22(3), 247–252. https://doi.org/10.1016/1011-13449306963-4
  • Gitelson, A. A., Viña, A., Arkebauer, T. J., Rundquist, D. C., Keydan, G., & Leavitt, B. (2003). Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophysical Research Letters, 30(5). https://doi.org/10.1029/2002gl016450
  • Gopal, S., & Woodcock, C. (1994). Theory and methods for accuracy assessment of thematic maps using fuzzy sets. Photogrammetric Engineering and Remote Sensing, 60(2), 181–188. https://www.asprs.org/wp-content/uploads/pers/1994journal/feb/1994_feb_181-188.pdf
  • Greig, B. J. W., & Pratt, J. E. (1976). Some observations on the longevity of Fomes annosus in conifer stumps. Forest Pathology, 6(4), 250–253. https://doi.org/10.1111/j.1439-0329.1976.tb00533.x
  • Guyot, G., & Baret, F. (1988). Utilisation de la haute resolution spectrale pour suivre l’etat des couverts vegetaux. Spectral Signatures of Objects in Remote. https://adsabs.harvard.edu/full/1988ESASP.287.279G
  • Hauglin, M., Hansen, E., Sørngård, E., Næsset, E., & Gobakken, T. (2018). Utilizing accurately positioned harvester data: Modelling forest volume with airborne laser scanning. Canadian Journal of Forest Research, 48(8), 913–922. https://doi.org/10.1139/cjfr-2017-0467
  • Hijmans, R. J. (2022). Terra: spatial data analysis (Version 1.6-17) [Computer software]. https://CRAN.R-project.org/package=terra
  • Hoffmann, S., Schönauer, M., Heppelmann, J., Asikainen, A., Cacot, E., Eberhard, B., Hasenauer, H., Ivanovs, J., Jaeger, D., Lazdins, A., Mohtashami, S., Moskalik, T., Nordfjell, T., Stereńczak, K., Talbot, B., Uusitalo, J., Vuillermoz, M., & Astrup, R. (2022). Trafficability prediction using depth-to-water maps: the status of application in Northern and Central European Forestry. Current Forestry Reports, 8(1), 55–71. https://doi.org/10.1007/s40725-021-00153-8
  • Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295–309. https://doi.org/10.1016/0034-42578890106-X
  • Huo, L., Persson, H. J., & Lindberg, E. (2021). Early detection of forest stress from European spruce bark beetle attack, and a new vegetation index: Normalized distance red & SWIR (NDRS). Remote Sensing of Environment, 255, 112240. https://doi.org/10.1016/j.rse.2020.112240
  • Huse, K. J., Solheim, H., & Venn, K. (1994). Råte i gran registrert på stubber etter hogst vinteren 1992 [Stump inventory of root and butt rots in Norway spruce cut in 1992]. Rapp Skogforsk, 23, 1–26. http://hdl.handle.net/11250/2560332
  • Hylen, G., & Granhus, A. (2018). A probability model for root and butt rot in Picea abies derived from Norwegian national forest inventory data. Scandinavian Journal of Forest Research, 33(7), 657–667. https://doi.org/10.1080/02827581.2018.1487074
  • Kandare, K., Dalponte, M., Ørka, H. O., Frizzera, L., & Næsset, E. (2017). Prediction of species-specific volume using different inventory approaches by fusing airborne laser scanning and hyperspectral data. Remote Sensing, 9(5), 19. https://doi.org/10.3390/rs9050400
  • Kington, J., & Collison, A. (2022). Scene level normalization and harmonization of planet dove imagery. Planet Labs. https://assets.planet.com/docs/scene_level_normalization_of_planet_dove_imagery.pdf
  • Lausch, A., Erasmi, S., King, D. J., Magdon, P., & Heurich, M. (2016). Understanding forest health with remote sensing -Part I—a review of spectral traits, processes and remote-sensing characteristics. Remote Sensing, 8(12), 1029. https://doi.org/10.3390/rs8121029
  • Leutner, B., Horning, N., & Schwalb-Willmann, J. (2022). RStoolbox: tools for remote sensing data analysis (Version 0.3.0) [Computer software]. https://CRAN.R-project.org/package=RStoolbox
  • Lozano-Garcia, D. F., Fernandez, R. N., & Johannsen, C. J. (1991). Assessment of regional biomass-soil relationships using vegetation indexes. IEEE Transactions on Geoscience and Remote Sensing: A Publication of the IEEE Geoscience and Remote Sensing Society, 29(2), 331–339. https://doi.org/10.1109/36.73676
  • Lymburner, L., Beggs, P. J., & Jacobson, C. R. (2000). Estimation of canopy-average surface-specific leaf area using Landsat TM data. Photogrammetric engineering & remote sensing, 66. http://www.asprs.org/wp-content/uploads/pers/2000journal/february/2000_feb_183-191.pdf
  • Maltamo, M., Hauglin, M., Næsset, E., & Gobakken, T. (2019). Estimating stand level stem diameter distribution utilizing harvester data and airborne laser scanning. Silva Fennica, 53(3), 19. https://doi.org/10.14214/sf.10075
  • Marsett, R. C., Qi, J., Heilman, P., Biedenbender, S. H., Carolyn Watson, M., Amer, S., Weltz, M., Goodrich, D., & Marsett, R. (2006). Remote sensing for grassland management in the arid southwest. Rangeland Ecology & Management, 59(5), 530–540. https://doi.org/10.2111/05-201R.1
  • Mattila, U., & Nuutinen, T. (2007). Assessing the incidence of butt rot in Norway spruce in southern Finland. Silva Fennica, 41(1), 29–43. https://doi.org/10.14214/sf.473
  • McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. https://doi.org/10.1080/01431169608948714
  • Meyer, H., Reudenbach, C., Hengl, T., Katurji, M., & Nauss, T. (2018). Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation. Environmental Modelling & Software, 101, 1–9. https://doi.org/10.1016/j.envsoft.2017.12.001
  • Meyer, H., Reudenbach, C., Wöllauer, S., & Nauss, T. (2019). Importance of spatial predictor variable selection in machine learning applications – Moving from data reproduction to spatial prediction. Ecological Modelling, 411, 11. https://doi.org/10.1016/j.ecolmodel.2019.108815
  • Möykkynen, T., & Pukkala, T. (2010). Optimizing the management of Norway spruce and Scots pine mixtures on a site infected by Heterobasidion coll. Scandinavian Journal of Forest Research, 25(2), 127–137. https://doi.org/10.1080/02827581003667322
  • Næsset, E. (2009). Effects of different sensors, flying altitudes, and pulse repetition frequencies on forest canopy metrics and biophysical stand properties derived from small-footprint airborne laser data. Remote Sensing of Environment, 113(1), 148–159. https://doi.org/10.1016/j.rse.2008.09.001
  • Nagler, P. L., Daughtry, C. S. T., & Goward, S. N. (2000). Plant Litter and Soil Reflectance. Remote Sensing of Environment, 71(2), 207–215. https://doi.org/10.1016/S0034-42579900082-6
  • Noordermeer, L., Bollandsås, O. M., Gobakken, T., & Næsset, E. (2018). Direct and indirect site index determination for Norway spruce and Scots pine using bitemporal airborne laser scanner data. Forest Ecology and Management, 428, 104–114. https://doi.org/10.1016/j.foreco.2018.06.041
  • Noordermeer, L., Korpunen, H., Berg, S., Gobakken, T., & Astrup, R. (In press). Economic losses caused by butt rot in Norway spruce trees in Norway. Scandinavian Journal of Forest Research.
  • Noordermeer, L., Næsset, E., & Gobakken, T. (2022). Effects of harvester positioning errors on merchantable timber volume predicted and estimated from airborne laser scanner data in mature Norway spruce forests. Silva Fennica, 56(1). https://doi.org/10.14214/sf.10608
  • Noordermeer, L., Sørngård, E., Astrup, R., Næsset, E., & Gobakken, T. (2021). Coupling a differential global navigation satellite system to a cut-to-length harvester operating system enables precise positioning of harvested trees. International Journal of Forest Engineering, 32(2), 119–127. https://doi.org/10.1080/14942119.2021.1899686
  • Ørka, H. O., Næsset, E., & Bollandsås, O. M. (2010). Effects of different sensors and leaf-on and leaf-off canopy conditions on echo distributions and individual tree properties derived from airborne laser scanning. Remote Sensing of Environment, 114(7), 1445–1461. https://doi.org/10.1016/j.rse.2010.01.024
  • Perry, C. R., & Lautenschlager, L. F. (1984). Functional equivalence of spectral vegetation indices. Remote Sensing of Environment, 14(1–3), 169–182. https://doi.org/10.1016/0034-4257(84)90013-0
  • Pinty, B., & Verstraete, M. M. (1992). GEMI: A non-linear index to monitor global vegetation from satellites. Vegetatio, 101(1), 15–20. https://doi.org/10.1007/BF00031911
  • Pitkänen, T. P., Piri, T., Lehtonen, A., & Peltoniemi, M. (2021). Detecting structural changes induced by Heterobasidion root rot on Scots pines using terrestrial laser scanning. Forest Ecology and Management, 492, 119239. https://doi.org/10.1016/j.foreco.2021.119239
  • Planet Team. (2017). Planet Application Program Interface: In Space for Life on Earth. Planet. https://api.planet.com
  • Popescu, S. C. (2007). Estimating biomass of individual pine trees using airborne lidar. Biomass and Bioenergy, 31(9), 646–655. https://doi.org/10.1016/j.biombioe.2007.06.022
  • Probst, P., Wright, M. N., & Boulesteix, A.-L. (2019). Hyperparameters and tuning strategies for random forest. Data Mining and Knowledge Discovery, 9(3), e1301. https://doi.org/10.1002/widm.1301
  • Pukkala, T., Möykkynen, T., Thor, M., Rönnberg, J., & Stenlid, J. (2005). Modeling infection and spread of Heterobasidion annosum in even-aged Fennoscandian conifer stands. Journal Canadien de La Recherche Forestiere, 35(1), 74–84. https://doi.org/10.1139/x04-150
  • Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., & Sorooshian, S. (1994). A modified soil adjusted vegetation index. Remote Sensing of Environment, 48(2), 119–126. https://doi.org/10.1016/0034-42579490134-1
  • Räty, J., Breidenbach, J., Hauglin, M., & Astrup, R. (2021). Prediction of butt rot volume in Norway spruce forest stands using harvester, remotely sensed and environmental data. International Journal of Applied Earth Observation and Geoinformation, 105, 102624. https://doi.org/10.1016/j.jag.2021.102624
  • Richardson, A. J., & Wiegand, C. L. (1977). Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing, 43(12), 1541–1552. https://www.asprs.org/wp-content/uploads/pers/1977journal/dec/1977_dec_1541-1552.pdf
  • Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D. W. (1974). Monitoring vegetation systems in the Great Plains with ERTS. NASA Special Publication, 351(1), 309. https://ntrs.nasa.gov/citations/19740022614
  • Roussel, J.-R., & Auty, D. (2022). lidR: airborne lidar data manipulation and visualization for forestry applications (Version 4.0.1) [Computer software]. https://cran.r-project.org/package=lidR
  • Seidl, R., Thom, D., Kautz, M., Martin Benito, D., Peltoniemi, M., Vacchiano, G., Wild, J., Ascoli, D., Petr, M., Honkaniemi, J., Lexer, M. J., Trotsiuk, V., Mairota, P., Svoboda, M., Fabrika, M., Nagel, T. A., & Reyer, C. P. O. (2017). Forest disturbances under climate change. Nature Climate Change, 7(6), 395–402. https://doi.org/10.1038/nclimate3303
  • Stenlid, J., & Wästerlund, I. (1986). Estimating the frequency of stem rot in Picea abies using an increment borer. Scandinavian Journal of Forest Research, 1(1–4), 303–308. https://doi.org/10.1080/02827588609382421
  • Susaeta, A., & Gong, P. (2019). Optimal harvest strategy for even‐aged stands with price uncertainty and risk of natural disturbances. Natural Resource Modeling, 32(3), 25. https://doi.org/10.1111/nrm.12211
  • Thiam, A. K. (1998). Geographic information systems and remote sensing methods for assessing and monitoring land degradation in the Sahel region: The case of southern Mauritania. https://search.proquest.com/openview/484bdf270c849a8303198121f2efe075/1?pq-origsite=gscholar&cbl=18750&diss=y
  • Thor, M., Ståhl, G., & Stenlid, J. (2005). Modelling root rot incidence in Sweden using tree, site and stand variables. Scandinavian Journal of Forest Research, 20(2), 165–176. https://doi.org/10.1080/02827580510008347
  • Vestjordet. (1967). Functions and tables for volume of standing trees. Norway spruce. Meddelelser Fra Det Norske Skogforsøksvesen, 22, 545–574. https://hdl.handle.net/11250/2988611
  • Wright, M. N., & Ziegler, A. (2017). Ranger: a fast implementation of random forests for high dimensional data in C++ and R. Journal of Statistical Software, 77(1), 1–17. https://doi.org/10.18637/jss.v077.i01
  • Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033. https://doi.org/10.1080/01431160600589179
  • Žemaitis, P., & Žemaitė, I. (2018). Does butt rot affect the crown condition of Norway spruce trees? Trees, 32(2), 489–495. https://doi.org/10.1007/s00468-017-1645-0