538
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Winter remote sensing images are more suitable for forest mapping in Jiangxi Province

, , , &
Article: 2237655 | Received 23 Dec 2022, Accepted 12 Jul 2023, Published online: 27 Jul 2023

References

  • Adjognon, G. S., Rivera-Ballesteros, A., & van Soest, D. (2019). Satellite-based tree cover mapping for forest conservation in the drylands of Sub Saharan Africa (SSA): Application to Burkina Faso gazetted forests. Development Engineering, 4, 100039. https://doi.org/10.1016/j.deveng.2018.100039
  • Ahrends, A., Hollingsworth, P. M., Beckschafer, P., Chen, H., Zomer, R. J., Zhang, L., Wang, M., & Xu, J. (2017). China’s fight to halt tree cover loss. Proceedings Biological Sciences / the Royal Society, 284(1854), 20162599. https://doi.org/10.1098/rspb.2016.2559
  • Alamgir, M., Turton, S. M., Macgregor, C. J., & Pert, P. L. (2016). Ecosystem services capacity across heterogeneous forest types: Understanding the interactions and suggesting pathways for sustaining multiple ecosystem services. Science of the Total Environment, 566, 584–13. https://doi.org/10.1016/j.scitotenv.2016.05.107
  • Barakat, A., Khellouk, R., El Jazouli, A., Touhami, F., & Nadem, S. (2018). Monitoring of forest cover dynamics in eastern area of Béni-Mellal Province using ASTER and Sentinel-2A multispectral data. Geology, Ecology, & Landscapes, 2(3), 203–215. https://doi.org/10.1080/24749508.2018.1452478
  • Barrett, F., McRoberts, R. E., Tomppo, E., Cienciala, E., & Waser, L. T. (2016). A questionnaire-based review of the operational use of remotely sensed data by national forest inventories. Remote Sensing of Environment, 174, 279–289. https://doi.org/10.1016/j.rse.2015.08.029
  • Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24–31. https://doi.org/10.1016/j.isprsjprs.2016.01.011
  • Bey, A., Sanchez-Paus, D. A., Maniatis, D., Marchi, G., Mollicone, D., Ricci, S., Bastin, J., Moore, R., Federici, S., Rezende, M., Patriarca, C., Turia, R., Gamoga, G., Abe, H., Kaidong, E., & Miceli, G. (2016). Collect Earth: Land use and land cover assessment through augmented visual interpretation. Remote Sensing, 8(10), 1–24. https://doi.org/10.3390/rs8100807
  • Bonan, G. B. (2008). Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science: Advanced Materials and Devices, 320(5882), 1444–1449. https://doi.org/10.1126/science.1155121
  • Breiman, L. (2001). Random forest. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
  • Brockerhoff, E. G., Barbaro, L., Castagneyrol, B., Forrester, D. I., Gardiner, B., Gonzalez-Olabarria, J. R., Lyver, P. O., Meurisse, N., Oxbrough, A., Taki, H., Thompson, I. D., van der Plas, F., & Jactel, H. (2017). Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodiversity and Conservation, 26(13), 3005–3035. https://doi.org/10.1007/s10531-017-1453-2
  • Camargo, F. F., Sano, E. E., Almeida, C. M., Mura, J. C., & Almeida, T. (2019). A comparative assessment of machine-learning techniques for land use and land cover classification of the Brazilian Tropical Savanna using ALOS-2/PALSAR-2 polarimetric images. Remote Sensing, 11(13), 1600–1616. https://doi.org/10.3390/rs11131600
  • Cánovas-García, F., Alonso-Sarría, F., Gomariz-Castillo, F., & Oñate-Valdivieso, F. (2017). Modification of the random forest algorithm to avoid statistical dependence problems when classifying remote sensing imagery. Computers & Geosciences, 103, 1–11. https://doi.org/10.1016/j.cageo.2017.02.012
  • Deng, L. I., Zhang, C. H., Wei, J. U., & Liu, L. J. (2016). Forest net primary productivity dynamics and driving forces in Jiangxi Province, China. Chinese Journal of Plant Ecology, 40(7), 643–657. https://doi.org/10.17521/cjpe.2015.0348
  • Eskandari, S., & Ali Mahmoudi, S. (2022). Mapping land cover and forest density in Zagros forests of Khuzestan province in Iran: A study based on Sentinel-2, Google Earth and field data. Ecological Informatics, 70, 101727. https://doi.org/10.1016/j.ecoinf.2022.101727
  • Feng, D., Zhao, Y. Y., Yu, L., Li, C. C., Wang, J., Clinton, N., Bai, Y. Q., Belward, A., Zhu, Z. L., & Gong, P. (2016). Circa 2014 African land-cover maps compatible with FROM-GLC and GLC2000 classification schemes based on multi-seasonal Landsat data. International Journal of Remote Sensing, 37(19), 4648–4664. https://doi.org/10.1080/01431161.2016.1218090
  • Filella, I., & Penuelas, J. (2007). The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. International Journal of Remote Sensing, 15(7), 1459–1470. https://doi.org/10.1080/01431169408954177
  • Forkuor, G., Dimobe, K., Serme, I., & Tondoh, J. E. (2017). Landsat-8 vs. Sentinel-2: Examining the added value of sentinel-2’s red-edge bands to land-use and land-cover mapping in Burkina Faso. GIScience & Remote Sensing, 55(3), 331–354. https://doi.org/10.1080/15481603.2017.1370169
  • Frampton, W. J., Dash, J., Watmough, G., & Milton, E. J. (2013). Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS Journal of Photogrammetry and Remote Sensing, 82, 83–92. https://doi.org/10.1016/j.isprsjprs.2013.04.007
  • Fundisi, E., Tesfamichael, S. G., & Ahmed, F. (2021). A bi-seasonal classification of woody plant species using Sentinel-2A and SPOT-6 in a localised species-rich savanna environment. Geocarto International, 32(21), 1–22. https://doi.org/10.1080/10106049.2021.1939441
  • Ganz, S., Adler, P., & Kändler, G. (2020). Forest cover mapping based on a combination of aerial images and Sentinel-2 satellite data compared to National Forest Inventory Data. Forests, 11(12), 1322. https://doi.org/10.3390/f11121322
  • Gao, T., Zhu, J., Zheng, X., Shang, G., Huang, L., & Wu, S. (2015). Mapping spatial distribution of larch plantations from multi-seasonal Landsat-8 OLI imagery and multi-scale textures using random forests. Remote Sensing, 7(2), 1702–1720. https://doi.org/10.3390/rs70201702
  • Ghorbanian, A., Kakooei, M., Amani, M., Mahdavi, S., Mohammadzadeh, A., & Hasanlou, M. (2020). Improved land cover map of Iran using Sentinel imagery within google earth engine and a novel automatic workflow for land cover classification using migrated training samples. ISPRS Journal of Photogrammetry and Remote Sensing, 167, 276–288. https://doi.org/10.1016/j.isprsjprs.2020.07.013
  • Giri, C., Ochieng, E., Tieszen, L. L., Zhu, Z., Singh, A., Loveland, T., Masek, J., & Duke, N. (2011). Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography, 20(1), 154–159. https://doi.org/10.1111/j.1466-8238.2010.00584.x
  • Gómez, C., White, J. C., & Wulder, M. A. (2016). Optical remotely sensed time series data for land cover classification: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 116, 55–72. https://doi.org/10.1016/j.isprsjprs.2016.03.008
  • Gong, P., Wang, J., Yu, L., Zhao, Y., Zhao, Y., Liang, L., Niu, Z., Huang, X., Fu, H., Liu, S., Li, C., Li, X., Fu, W., Liu, C., Xu, Y., Wang, X., Cheng, Q., Hu, L. … Chen, J. (2012). Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. International Journal of Remote Sensing, 34(7), 2607–2654. https://doi.org/10.1080/01431161.2012.748992
  • Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031
  • Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., & Townshend, J. R. G. (2013). High-resolution global maps of 21st-century forest cover change. Science: Advanced Materials and Devices, 342(6160), 850–853. https://doi.org/10.1126/science.1244693
  • Häyhä, T., Franzese, P., Paletto, A., & Fath, B. D. (2015). Assessing, valuing, and mapping ecosystem services in Alpine forests. Ecosystem Services, 14, 12–23. https://doi.org/10.1016/j.ecoser.2015.03.001
  • Hua, J. W., Chen, G. S., Yu, L., Ye, Q., Jiao, H. B., & Luo, X. F. (2021). Improved mapping of long-term forest disturbance and recovery dynamics in the subtropical China using all available Landsat time-series imagery on google earth engine platform. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 2754–2768. https://doi.org/10.1109/jstars.2021.3058421
  • Huang, C., Davis, L. S., & Townshend, J. R. G. (2010). An assessment of support vector machines for land cover classification. International Journal of Remote Sensing, 23(4), 725–749. https://doi.org/10.1080/01431160110040323
  • Huang, S. Y., Yang, L., Chen, X., & Yuan, Y. (2018). Study of typical arid crops classification based on machine learning. Spectroscopy Spectral Analysis, 38(10), 3169–3176. https://doi.org/10.2147/CMAR.S169459
  • Jamali, A. (2019). Evaluation and comparison of eight machine learning models in land use/land cover mapping using Landsat 8 OLI: A case study of the northern region of Iran. SN Applied Sciences, 1(11), 1448–1459. https://doi.org/10.1007/s42452-019-1527-8
  • Jin, Y. H., Liu, X. P., Chen, Y. M., & Liang, X. (2018). Land-cover mapping using Random Forest classification and incorporating NDVI time-series and texture: A case study of central Shandong. International Journal of Remote Sensing, 39(23), 8703–8723. https://doi.org/10.1080/01431161.2018.1490976
  • Jordan, C. F. (1969). Derivation of leaf‐area index from quality of light on the forest floor. Ecology, 50(4), 663–666. https://doi.org/10.2307/1936256
  • Kaszta, Z., Van De Kerchove, R., Ramoelo, A., Cho, M., Madonsela, S., Mathieu, R., & Wolff, E. (2016). Seasonal Separation of African Savanna components using worldview-2 imagery: A comparison of pixel- and object-based approaches and selected classification algorithms. Remote Sensing, 8(9), 763–782. https://doi.org/10.3390/rs8090763
  • Kelley, L. C., Pitcher, L., & Bacon, C. (2018). Using google earth engine to map complex shade-grown coffee landscapes in Northern Nicaragua. Remote Sensing, 10(6), 952–971. https://doi.org/10.3390/rs10060952
  • Kim, H., & Yeom, J. (2014). Effect of red-edge and texture features for object-based paddy rice crop classification using RapidEye multi-spectral satellite image data. International Journal of Remote Sensing, 35(19), 7046–7068. https://doi.org/10.1080/01431161.2014.965285
  • Li, X., Chen, W., Cheng, X., & Wang, L. Z. (2016). A comparison of machine learning algorithms for mapping of complex surface-mined and agricultural landscapes using ZiYuan-3 stereo satellite imagery. Remote Sensing, 8(6), 514–541. https://doi.org/10.3390/rs8060514
  • Li, R., Fang, P., Xu, W., Wang, L., Ou, G., Zhang, W., & Huang, X. (2022). Classifying forest types over a mountainous area in southwest china with Landsat data composites and multiple environmental factors. Forests, 13(1), 135. https://doi.org/10.3390/f13010135
  • Li, Q. Y., Qiu, C. P., Ma, L., Schmitt, M., & Zhu, X. (2020). Mapping the land cover of Africa at 10 m resolution from multi-source remote sensing data with google earth engine. Remote Sensing, 12(4), 602–624. https://doi.org/10.3390/rs12040602
  • Liu, C., Li, W. L., Zhu, G. F., Zhou, H. K., Yan, H. P., & Xue, P. F. (2020). Land use/land cover changes and their driving factors in the Northeastern Tibetan Plateau based on geographical detectors and google earth engine: A case study in gannan prefecture. Remote Sensing, 12(19), 3139–3157. https://doi.org/10.3390/rs12193139
  • Liu, Q. S., Song, H. W., Liu, G. H., Huang, C., & Li, H. (2019). Evaluating the potential of multi-seasonal CBERS-04 imagery for mapping the quasi-circular vegetation patches in the yellow river delta using random forest. Remote Sensing, 11(10), 1216–1240. https://doi.org/10.3390/rs11101216
  • Li, C. C., Wang, J., Wang, L. Z., Hu, L. Y., & Gong, P. (2014). Comparison of classification algorithms and training sample sizes in urban land classification with Landsat thematic mapper imagery. Remote Sensing, 6(2), 964–983. https://doi.org/10.3390/rs6020964
  • Mahdianpari, M., Salehi, B., Mohammadimanesh, F., Homayouni, S., & Gill, E. (2018). The first wetland inventory map of newfoundland at a spatial resolution of 10 m using Sentinel-1 and Sentinel-2 data on the google earth engine cloud computing platform. Remote Sensing, 11(1), 43–70. https://doi.org/10.3390/rs11010043
  • Ma, M., Liu, J., Liu, M., Zeng, J., & Li, Y. (2021). Tree species classification based on Sentinel-2 imagery and random forest classifier in the eastern regions of the qilian mountains. Forests, 12(12), 1736. https://doi.org/10.3390/f12121736
  • Maxwell, A. E., Strager, M. P., Warner, T. A., Ramezan, C. A., Morgan, A. N., & Pauley, C. E. (2019). Large-area, high spatial resolution land cover mapping using random forests, GEOBIA, and NAIP Orthophotography: Findings and recommendations. Remote Sensing, 11(12), 1409–1436. https://doi.org/10.3390/rs11121409
  • Millard, K., & Richardson, M. (2015). On the importance of training data sample selection in random forest image classification: A case study in peatland ecosystem mapping. Remote Sensing, 7(7), 8489–8515. https://doi.org/10.3390/rs70708489
  • Na, X., Zhang, S., Li, X., Yu, H., & Liu, C. (2010). Improved land cover mapping using random forests Combined with Landsat Thematic Mapper Imagery and Ancillary Geographic Data. Photogrammetric Engineering & Remote Sensing, 76(7), 833–840. https://doi.org/10.14358/PERS.76.7.833
  • Norovsuren, B., Renchin, T., Tseveen, B., Yangiv, A., & Altanchimeg, T. (2019). Estimation of Forest Coverage in Northern Region of Mongolia Using Sentinel and Landsat Data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-5/W3, 71–76. https://doi.org/10.5194/isprs-archives-XLII-5-W3-71-2019
  • Ottosen, T. B., Petch, G., Hanson, M., & Skjoth, C. A. (2020). Tree cover mapping based on Sentinel-2 images demonstrate high thematic accuracy in Europe. International Journal of Applied Earth Observations & Geoinformation, 84, 101947. https://doi.org/10.1016/j.jag.2019.101947
  • Pelletier, C., Valero, S., Inglada, J., Champion, N., & Dedieu, G. (2016). Assessing the robustness of random forests to map land cover with high resolution satellite image time series over large areas. Remote Sensing of Environment, 187, 156–168. https://doi.org/10.1016/j.rse.2016.10.010
  • Praticò, S., Solano, F., DiFazio, S., & Modica, G. (2021). Machine learning classification of Mediterranean forest habitats in google earth engine based on seasonal Sentinel-2 time-series and input image composition optimisation. Remote Sensing, 13(4), 586. https://doi.org/10.3390/rs13040586
  • Pu, R., Landry, S., & Yu, Q. (2018). Assessing the potential of multi-seasonal high resolution Pléiades satellite imagery for mapping urban tree species. International Journal of Applied Earth Observation and Geoinformation, 71, 144–158. https://doi.org/10.1016/j.jag.2018.05.005
  • Qin, Y., Xiao, X., Wigneron, J.-P., Ciais, P., Brandt, M., Fan, L., Li, X., Crowell, S., Wu, X., Doughty, R., Zhang, Y., Liu, F., Sitch, S., & Moore, B. (2021). Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nature Climate Change, 11(5), 442–448. https://doi.org/10.1038/s41558-021-01026-5
  • Qiu, S., He, B., Yin, C., & Liao, Z. (2017). Assessments of Sentinel-2 vegetation red-edge spectral bands for improving land cover classification. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W7, 871–874. https://doi.org/10.5194/isprs-archives-XLII-2-W7-871-2017
  • Rana, V. K., Venkata, S., & M, T. (2020). Performance evaluation of MLE, RF and SVM classification algorithms for watershed scale land use/land cover mapping using sentinel 2 bands. Remote Sensing Applications: Society & Environment, 19, 100351. https://doi.org/10.1016/j.rsase.2020.100351
  • Rogan, J., Franklin, J., Stow, D., Miller, J., Woodcock, C. E., & Roberts, D. (2008). Mapping land-cover modifications over large areas: A comparison of machine learning algorithms. Remote Sensing of Environment, 112(5), 2272–2283. https://doi.org/10.1016/j.rse.2007.10.004
  • Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the great plains with erts. Third Earth Resources Technology Satellite-1 Symposium (pp. 309–317). https://ntrs.nasa.gov/citations/19740022614
  • Senf, C., Laštovička, J., Okujeni, A., Heurich, M., & van der Linden, S. (2020). A generalized regression-based unmixing model for mapping forest cover fractions throughout three decades of Landsat data. Remote Sensing of Environment, 240, 111691. https://doi.org/10.1016/j.rse.2020.111691
  • Shamsoddini, A., & Raval, S. (2018). Mapping red edge-based vegetation health indicators using Landsat TM data for Australian native vegetation cover. Earth Science Informatics, 11(4), 545–552. https://doi.org/10.1007/s12145-018-0347-5
  • Shao, Y., & Lunetta, R. S. (2012). Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRS Journal of Photogrammetry and Remote Sensing, 70, 78–87. https://doi.org/10.1016/j.isprsjprs.2012.04.001
  • Shi, D., & Yang, X. J. (2015). Support Vector Machines for Land Cover Mapping from Remote Sensor Imagery. In Monitoring and Modeling of Global Changes: A Geomatics Perspective (pp. 265–279). Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9813-6_13
  • Shi, D., & Yang, X. J. (2017). A relative evaluation of random forests for land cover mapping in an urban area. Photogrammetric Engineering & Remote Sensing, 83(8), 541–552. https://doi.org/10.14358/pers.83.8.541
  • Son, N.-T., Chen, C.-F., & Chen, C.-R. (2017). Mapping mangrove density from rapideye data in Central America. Open Geosciences, 9(1), 211–220. https://doi.org/10.1515/geo-2017-0018
  • Su, Y., Li, X., Feng, M., Nian, Y., Huang, L., Xie, T., Zhang, K., Chen, F., Huang, W., Chen, J., & Chen, F. (2021). High agricultural water consumption led to the continued shrinkage of the Aral Sea during 1992-2015. Science of the Total Environment, 777, 145993. https://doi.org/10.1016/j.scitotenv.2021.145993
  • Sun, S. B., Zhang, Y. G., Song, Z. L., Chen, B. Z., Zhang, Y. J., Yuan, W. P., Chen, C., Chen, W., Ran, X. B., & Wang, Y. D. (2020). Mapping coastal wetlands of the bohai rim at a spatial resolution of 10 m using multiple open-access satellite data and terrain indices. Remote Sensing, 12(24), 4114–4140. https://doi.org/10.3390/rs12244114
  • Szostak, M., Hawryło, P., & Piela, D. (2017). Using of Sentinel-2 images for automation of the forest succession detection. European Journal of Remote Sensing, 51(1), 142–149. https://doi.org/10.1080/22797254.2017.1412272
  • Talukdar, S., Singha, P., Mahato, S., Shahfahad Pal, S., Liou, Y., & Rahman, A. (2020). Land-use land-cover classification by machine learning classifiers for satellite observations—a review. Remote Sensing, 12(7), 1135–1159. https://doi.org/10.3390/rs12071135
  • Tariq, A., & Mumtaz, F. (2022). Modeling spatio‑temporal assessment of land use land cover of Lahore and its impact on land surface temperature using multi‑spectral remote sensing data. Environmental Science and Pollution Research, 1–17. https://doi.org/10.1007/s11356-022-23928-3
  • Tariq, A., Mumtaz, F., Majeed, M., & Zeng, X. (2022). Spatio‑temporal assessment of land use land cover based on trajectories and cellular automata Markov modelling and its impact on land surface temperature of Lahore district Pakistan. Environmental Monitoring and Assessment, 195(1), 114. https://doi.org/10.1007/s10661-022-10738-w
  • Tariq, A., Mumtaz, F., Zeng, X., Baloch, M. Y. J., & Moazzam, M. F. U. (2022). Spatio-temporal variation of seasonal heat islands mapping of Pakistan during 2000–2019, using day-time and night-time land surface temperatures MODIS and meteorological stations data. Remote Sensing Applications: Society & Environment, 27, 100779. https://doi.org/10.1016/j.rsase.2022.100779
  • Tariq, A., Yan, J., & Mumtaz, F. (2022). Land change modeler and CA-Markov chain analysis for land use land cover change using satellite data of Peshawar, Pakistan. Physics and Chemistry of the Earth, Parts A/B/C, 128, 103286. https://doi.org/10.1016/j.pce.2022.103286
  • Teluguntla, P., Thenkabail, P. S., Oliphant, A., Xiong, J., Gumma, M. K., Congalton, R. G., Yadav, K., & Huete, A. (2018). A 30-m Landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform. ISPRS Journal of Photogrammetry and Remote Sensing, 144, 325–340. https://doi.org/10.1016/j.isprsjprs.2018.07.017
  • Townshend, J. R., Masek, J. G., Huang, C., Vermote, E. F., Gao, F., Channan, S., Sexton, J. O., Feng, M., Narasimhan, R., Kim, D., Song, K., Song, D., Song, X.-P., Noojipady, P., Tan, B., Hansen, M. C., Li, M., & Wolfe, R. E. (2012). Global characterization and monitoring of forest cover using Landsat data: Opportunities and challenges. International Journal of Digital Earth, 5(5), 373–397. https://doi.org/10.1080/17538947.2012.713190
  • Tucker, C. J., Grant, D. M., & Dykstra, J. D. (2004). NASA’s global orthorectified Landsat dataset. Photogrammetric Engineering & Remote Sensing, 70(3), 313–322. https://doi.org/10.14358/PERS.70.3.313
  • Tzamtzis, I., Federici, S., & Hanle, L. (2019). a methodological approach for a consistent and accurate land representation using the FAO open foris collect earth tool for GHG Inventories. Carbon Management, 10(4), 437–450. https://doi.org/10.1080/17583004.2019.1634934
  • Ustuner, M., Sanli, F. B., Abdikan, S., Esetlili, M. T., & Kurucu, Y. (2014). Crop type classification using vegetation indices of rapideye imagery. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(7), 195–198. https://doi.org/10.5194/isprsarchives-XL-7-195-2014
  • Wang, Y., Liu, H., Sang, L., & Wang, J. (2022). Characterizing forest cover and landscape pattern using multi-source remote sensing data with ensemble learning. Remote Sensing, 14(21), 5470. https://doi.org/10.3390/rs14215470/
  • Wang, Y., Lu, Z., Sheng, Y., & Zhou, Y. (2020). Remote sensing applications in monitoring of protected areas. Remote Sensing, 12(9), 1370. https://doi.org/10.3390/rs12091370
  • Wang, Z. H., Song, W., Liang, S. L., Sun, J. Q., Xu, S. J., & Huang, D. M. (2017). Accuracy assessment model for classification result of remote sensing image based on spatial sampling. Journal of Applied Remote Sensing, 11(4), 046023–046023. https://doi.org/10.1117/1.Jrs.11.046023
  • Yang, Y., Yang, D., Wang, X. F., Zhang, Z., & Nawaz, Z. (2021). Testing accuracy of land cover classification algorithms in the qilian mountains based on GEe cloud platform. Remote Sensing, 13(24), 5064–5089. https://doi.org/10.3390/rs13245064/
  • Yang, Y., Yang, D., Wang, X., Zhang, Z., & Nawaz, Z. (2021). Testing accuracy of land cover classification algorithms in the qilian mountains based on GEE cloud platform. Remote Sensing, 13(24), 5064. https://doi.org/10.3390/rs13245064
  • Zhu, Z., Woodcock, C., Rogan, J., & Kellndorfer, J. (2012). Assessment of spectral, polarimetric, temporal, and spatial dimensions for urban and peri-urban land cover classification using Landsat and SAR data. Remote Sensing of Environment, 117, 72–82. https://doi.org/10.1016/j.rse.2011.07.020