684
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Leveraging involution and convolution in an explainable building damage detection framework

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2252166 | Received 03 Aug 2022, Accepted 22 Aug 2023, Published online: 05 Sep 2023

References

  • Binici, B., Yakut, A., Canbay, E., Akpinar, U., & Tuncay, K. (2022). Identifying buildings with high collapse risk based on Samos earthquake damage inventory in İzmir. Bulletin of Earthquake Engineering, 20(14), 1–21. https://doi.org/10.1007/s10518-021-01289-5
  • Boloorani, A. D., Darvishi, M., Weng, Q., & Liu, X. (2021). Post-war urban damage mapping using InSAR: The case of Mosul city in Iraq. ISPRS International Journal of Geo-Information, 10(3), 140. https://doi.org/10.3390/ijgi10030140
  • Cotrufo, S., Sandu, C., Giulio Tonolo, F., & Boccardo, P. (2018). Building damage assessment scale tailored to remote sensing vertical imagery. European Journal of Remote Sensing, 51(1), 991–1005. https://doi.org/10.1080/22797254.2018.1527662
  • Cui, S., Yin, Y., Wang, D., Zhiwu, L., & Wang, Y. (2021). A stacking-based ensemble learning method for earthquake casualty prediction. Applied Soft Computing, 101, 107038. https://doi.org/10.1016/j.asoc.2020.107038
  • D’Addabbo, A., Pasquariello, G., & Amodio, A. (2022). Urban Change Detection from VHR Images via Deep-Features Exploitation. In: X. Yang, S. Sherratt, N. Dey, & A. Joshi (Eds.) Proceedings of Sixth International Congress on Information and Communication Technology. Lecture Notes in Networks and Systems, vol 236. Springer, Singapore. https://doi.org/10.1007/978-981-16-2380-6_43
  • Davies, T. R., Korup, O., & Clague, J. J. (2021). Geomorphology and natural hazards: Understanding landscape change for disaster mitigation. John Wiley & Sons.
  • DesRoches, R., Comerio, M., Eberhard, M., Mooney, W., & Rix, G. J. (2011). Overview of the 2010 Haiti earthquake. Earthquake Spectra, 27(1_suppl1), 1–21. https://doi.org/10.1193/1.3630129
  • Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., & Gelly, S. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. https://openreview.net/forum?id=YicbFdNTTy
  • ElGharbawi, T., & Zarzoura, F. (2021). Damage detection using SAR coherence statistical analysis, application to Beirut, Lebanon. ISPRS Journal of Photogrammetry and Remote Sensing, 173, 1–9. https://doi.org/10.1016/j.isprsjprs.2021.01.001
  • Gupta, R., & Shah, M. 2020. Rescuenet: Joint building segmentation and damage assessment from satellite imagery [Paper presented]. 2020 25th International Conference on Pattern Recognition (ICPR). https://arxiv.org/abs/2004.07312v1
  • He, K., Zhang, X., Ren, S., & Sun, J. 2015. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification [Paper presented]. Proceedings of the IEEE international conference on computer vision. https://arxiv.org/abs/1502.01852v1
  • Huynh, N. H., Böer, G., & Schramm, H. (2022). Self-attention and generative adversarial networks for algae monitoring. European Journal of Remote Sensing, 55(1), 10–22. https://doi.org/10.1080/22797254.2021.2010605
  • Jagannathan, J., & Divya, C. (2021). Deep learning for the prediction and classification of land use and land cover changes using deep convolutional neural network. Ecological Informatics, 65, 101412. https://doi.org/10.1016/j.ecoinf.2021.101412
  • Ji, M., Liu, L., Runlin, D., & Buchroithner, M. F. (2019). A comparative study of texture and convolutional neural network features for detecting collapsed buildings after earthquakes using pre-and post-event satellite imagery. Remote Sensing, 11(10), 1202. https://doi.org/10.3390/rs11101202
  • Ji, M., Liu, L., Zhang, R., & Buchroithner, M. F. (2020). Discrimination of earthquake-induced building destruction from space using a pretrained CNN model. Applied Sciences, 10(2), 602. https://doi.org/10.3390/app10020602
  • Jundullah, M. R., & Wahyu Wijayanto, A. (2022). Natural disaster identification and mapping of Tsunami and earthquake in Indonesia using satellite imagery analysis. Aceh.
  • Kakogeorgiou, I., & Karantzalos, K. (2021). Evaluating explainable artificial intelligence methods for multi-label deep learning classification tasks in remote sensing. International Journal of Applied Earth Observation and Geoinformation, 103, 102520. https://doi.org/10.1016/j.jag.2021.102520
  • Kalantar, B., Ueda, N., Al-Najjar, H. A., & Abdul Halin, A. (2020). Assessment of convolutional neural network architectures for earthquake-induced building damage detection based on pre-and post-event orthophoto images. Remote Sensing, 12(21), 3529. https://doi.org/10.3390/rs12213529
  • Kapucu, N., Özerdem, A., & Sadiq, A.-A. (2022). Managing emergencies and crises: Global perspectives. Jones & Bartlett Learning.
  • Kingma, D. P., & Jimmy, B. (2017). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. http://arxiv.org/abs/1412.6980
  • Langer, M., Oster, D., Speith, T., Hermanns, H., Kästner, L., Schmidt, E., Sesing, A., & Baum, K. (2021). What do we want from explainable artificial intelligence (XAI)?–A stakeholder perspective on XAI and a conceptual model guiding interdisciplinary XAI research. Artificial Intelligence, 296, 103473. https://doi.org/10.1016/j.artint.2021.103473
  • Li, Q., Gong, L., & Zhang, J. (2019). A correlation change detection method integrating PCA and multi-texture features of SAR image for building damage detection. European Journal of Remote Sensing, 52(1), 435–447. https://doi.org/10.1080/22797254.2019.1630322
  • Li, D., Jie, H., Wang, C., Xiangtai, L., She, Q., Zhu, L., Zhang, T., & Chen, Q. 2021. Involution: Inverting the inherence of convolution for visual recognition [Paper presented]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. https://arxiv.org/abs/2103.06255v2
  • Lin, Q., Tianyu, C., Wang, L., Kumar Mondal, S., Yin, H., & Wang, Y. (2022). Transfer learning for improving seismic building damage assessment. Remote Sensing, 14(1), 201. https://doi.org/10.3390/rs14010201
  • Meng, Z., Zhao, F., Liang, M., & Xie, W. (2021). Deep residual involution network for hyperspectral image classification. Remote Sensing, 13(16), 3055. https://doi.org/10.3390/rs13163055
  • Merlin, G. S., & Wiselin Jiji, G. (2019). Building damage detection of the 2004 Nagapattinam, India, Tsunami using the texture and spectral features from IKONOS images. Journal of the Indian Society of Remote Sensing, 47(1), 13–24. https://doi.org/10.1007/s12524-018-0858-z
  • Naito, S., Tomozawa, H., Mori, Y., Nagata, T., Monma, N., Nakamura, H., Fujiwara, H., & Shoji, G. (2020). Building-damage detection method based on machine learning utilizing aerial photographs of the Kumamoto earthquake. Earthquake Spectra, 36(3), 1166–1187. https://doi.org/10.1177/8755293019901309
  • Natteshan, N. V. S., & Suresh Kumar, N. (2020). Effective SAR image segmentation and classification of crop areas using MRG and CDNN techniques. European Journal of Remote Sensing, 53(sup1), 126–140. https://doi.org/10.1080/22797254.2020.1727777
  • Petch, J., Shuang, D., & Nelson, W. (2021). Opening the black box: The promise and limitations of explainable machine learning in cardiology. Canadian Journal of Cardiology, 38(2), 204–213. https://doi.org/10.1016/j.cjca.2021.09.004
  • Qing, Y., Ming, D., Wen, Q., Weng, Q., Xu, L., Chen, Y., Zhang, Y., & Zeng, B. (2022). Operational earthquake-induced building damage assessment using CNN-based direct remote sensing change detection on superpixel level. International Journal of Applied Earth Observation and Geoinformation, 112, 102899. https://doi.org/10.1016/j.jag.2022.102899
  • Rojat, T., Puget, R., Filliat, D., Del Ser, J., Gelin, R., & Díaz-Rodríguez, N. (2021). Explainable artificial intelligence (xai) on timeseries data: A survey. arXiv preprint arXiv:2104.00950. https://arxiv.org/abs/2104.00950v1
  • Rupnik, E., Nex, F., Toschi, I., & Remondino, F. (2018). Contextual classification using photometry and elevation data for damage detection after an earthquake event. European Journal of Remote Sensing, 51(1), 543–557. https://doi.org/10.1080/22797254.2018.1458584
  • Sattarzadeh, S., Sudhakar, M., Plataniotis, K. N., Jang, J., Jeong, Y., & Kim, H. 2021. Integrated Grad-CAM: Sensitivity-Aware visual Explanation of deep convolutional networks via Integrated Gradient-based Scoring [Paper presented]. ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada.
  • Seydi, S. T., & Hasanlou, M. (2021). A new structure for binary and multiple hyperspectral change detection based on spectral unmixing and convolutional neural network. Measurement, 186(1), 110137. https://doi.org/10.1016/j.measurement.2021.110137
  • Seydi, S. T., Hasanlou, M., & Chanussot, J. (2021). DSMNN-Net: A deep siamese morphological neural network model for burned area mapping using multispectral sentinel-2 and hyperspectral PRISMA images. Remote Sensing, 13(24), 5138. https://doi.org/10.3390/rs13245138
  • Stomberg, T. T., Stone, T., Leonhardt, J., & Roscher, R. (2022). Exploring wilderness using explainable machine learning in satellite imagery. arXiv preprint arXiv:2203.00379. https://arxiv.org/abs/2203.00379v3
  • Talreja, P., Durbha, S. S., Shinde, R. C., & Potnis, A. V. 2021. Real-time Embedded HPC based earthquake damage mapping using 3D LiDAR Point Clouds [Paper presented]. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium.
  • Ünlü, R., & Kiriş, R. (2021). Detection of damaged buildings after an earthquake with convolutional neural networks in conjunction with image segmentation. The Visual Computer, 38(2), 1–10. https://doi.org/10.1007/s00371-020-02043-9
  • Ünlü, R., & Kiriş, R. (2022). Detection of damaged buildings after an earthquake with convolutional neural networks in conjunction with image segmentation. The Visual Computer, 38(2), 685–694. https://doi.org/10.1007/s00371-020-02043-9
  • Wang, H., & Miao, F. (2022). Building extraction from remote sensing images using deep residual U-Net. European Journal of Remote Sensing, 55(1), 71–85. https://doi.org/10.1080/22797254.2021.2018944
  • Wang, C., Zhang, Y., Xie, T., Guo, L., Chen, S., Junyong, L., & Shi, F. (2022). A detection method for collapsed buildings combining post-earthquake high-resolution optical and synthetic aperture radar images. Remote Sensing, 14(5), 1100. https://doi.org/10.3390/rs14051100
  • Weber, E., Papadopoulos, D. P., Lapedriza, A., Ofli, F., Imran, M., & Torralba, A. (2022). Incidents1M: A large-scale dataset of images with natural disasters, damage, and incidents. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–14. arXiv preprint arXiv:2201.04236. https://doi.org/10.1109/TPAMI.2022.3191996
  • Xu, X., Chen, Y., Zhang, J., Chen, Y., Anandhan, P., & Manickam, A. (2021). A novel approach for scene classification from remote sensing images using deep learning methods. European Journal of Remote Sensing, 54(sup2), 383–395. https://doi.org/10.1080/22797254.2020.1790995
  • Yu, C., Han, R., Song, M., Liu, C., & Chang, C.-I. (2020). A simplified 2D-3D CNN architecture for hyperspectral image classification based on spatial–spectral fusion. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 2485–2501. https://doi.org/10.1109/JSTARS.2020.2983224
  • Zheng, Z., Zhong, Y., Wang, J., Ailong, M., & Zhang, L. (2021). Building damage assessment for rapid disaster response with a deep object-based semantic change detection framework: From natural disasters to man-made disasters. Remote Sensing of Environment, 265, 112636. https://doi.org/10.1016/j.rse.2021.112636