2,148
Views
3
CrossRef citations to date
0
Altmetric
Research Article

County-level corn yield prediction using supervised machine learning

, , ORCID Icon, , , , & show all
Article: 2253985 | Received 08 Jun 2023, Accepted 28 Aug 2023, Published online: 05 Sep 2023

References

  • Ahmad, W., Iqbal, J., Nasir, M. J., Ahmad, B., Khan, M. T., Khan, S. N., & Adnan, S. (2021). Impact of land use/land cover changes on water quality and human health in district Peshawar Pakistan. Scientific Reports, 11(1), 16526. https://doi.org/10.1038/s41598-021-96075-3
  • Ali, S., Khorrami, B., Jehanzaib, M., Tariq, A., Ajmal, M., Arshad, A., Shafeeque, M., Dilawar, A., Basit, I., Zhang, L., Sadri, S., Niaz, M. A., Jamil, A., & Khan, S. N. (2023). Spatial downscaling of GRACE data based on XGBoost model for improved understanding of hydrological droughts in the Indus Basin Irrigation System (IBIS). Remote Sensing, 15(4), 873. https://doi.org/10.3390/rs15040873
  • Asadollah, S. B. H. S., Sharafati, A., Motta, D., & Yaseen, Z. M. (2021). River water quality index prediction and uncertainty analysis: A comparative study of machine learning models. Journal of Environmental Chemical Engineering, 9(1), 104599. https://doi.org/10.1016/j.jece.2020.104599
  • Asif, M., Kazmi, J. H., & Tariq, A. (2023). Traditional ecological knowledge based indicators for monitoring rangeland conditions in Thal and Cholistan Desert, Pakistan. Environmental Challenges, 13, 100754. https://doi.org/10.1016/j.envc.2023.100754
  • Baral, S., Tripathy, A. K., & Bijayasingh, P. (2011). Yield prediction using artificial neural networks. In V. V. Das (Eds.), Computer networks and information technologies. CNC 2011. Communications in computer and information science (Vol. 142). https://doi.org/10.1007/978-3-642-19542-6_57
  • Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24–15. https://doi.org/10.1016/j.isprsjprs.2016.01.011
  • Bocca, F. F., & Rodrigues, L. H. A. (2016). The effect of tuning, feature engineering, and feature selection in data mining applied to rainfed sugarcane yield modelling. Computers and Electronics in Agriculture, 128, 67–76. https://doi.org/10.1016/j.compag.2016.08.015
  • Bose, P., Kasabov, N. K., Bruzzone, L., & Hartono, R. N. (2016). Spiking neural networks for crop yield estimation based on spatiotemporal analysis of image time series. IEEE Transactions on Geoscience and Remote Sensing, 54(11), 6563–6573. https://doi.org/10.1109/TGRS.2016.2586602
  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
  • Cai, Y. P., Guan, K. Y., Peng, J., Wang, S. W., Seifert, C., Wardlow, B., & Li, Z. (2018). A high-performance and in-season classification system of field-level crop types using time-series Landsat data and a machine learning approach. Remote Sensing of Environment, 210, 35–47. https://doi.org/10.1016/j.rse.2018.02.045
  • Caruana, R., & Niculescu-Mizil, A. (2006). An empirical comparison of supervised learning algorithms. Proceedings of the 23rd international conference on Machine learning, USA (pp. 161–168)
  • Cheng, J.-H., & Sun, D.-W. (2017). Partial least squares regression (PLSR) applied to NIR and HSI spectral data modeling to predict chemical properties of fish muscle. Food Engineering Reviews, 9(1), 36–49. https://doi.org/10.1007/s12393-016-9147-1
  • Craig, M. (2010). A history of the cropland data layer at NASS. USDA NASS CropScape. http://www.nass.usda.gov/Research_and_Science/Cropland/CDL_History_MEC.pdf
  • Dash, Y., Mishra, S. K., & Panigrahi, B. K. (2018). Rainfall prediction for the Kerala state of India using artificial intelligence approaches. Computers & Electrical Engineering, 70, 66–73. https://doi.org/10.1016/j.compeleceng.2018.06.004
  • Didan, K. (2015). MOD13Q1 MODIS/Terra vegetation indices 16-day L3 global 250m SIN grid V006. NASA EOSDIS Land Processes DAAC, 10.
  • Eberly, L. E. (2007). Multiple linear regression. Methods in molecular biology (Clifton, N.J.), 404, 165–187 https://doi.org/10.1007/978-1-59745-530-5_9.
  • Elavarasan, D., Vincent, D. R., Sharma, V., Zomaya, A. Y., & Srinivasan, K. (2018). Forecasting yield by integrating agrarian factors and machine learning models: A survey. Computers and Electronics in Agriculture, 155, 257–282. https://doi.org/10.1016/j.compag.2018.10.024
  • Everingham, Y., Sexton, J., Skocaj, D., & Inman-Bamber, G. (2016). Accurate prediction of sugarcane yield using a random forest algorithm. Agronomy for Sustainable Development, 36(2). https://doi.org/10.1007/s13593-016-0364-z
  • Feng, L., Wang, Y., Zhang, Z., & Du, Q. (2021). Geographically and temporally weighted neural network for winter wheat yield prediction. Remote Sensing of Environment, 262, 112514. https://doi.org/10.1016/j.rse.2021.112514
  • Fernandes, J. L., Ebecken, N. F. F., & Esquerdo, J. C. D. (2017). Sugarcane yield prediction in Brazil using NDVI time series and neural networks ensemble. International Journal of Remote Sensing, 38(16), 4631–4644. https://doi.org/10.1080/01431161.2017.1325531
  • Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29(5), 1189–1232. https://doi.org/10.1214/aos/1013203451
  • Gentleman, R., & Carey, V. (2008). Unsupervised machine learning. In Bioconductor Case Studies. Use R! (pp. 137–157). Springer. https://doi.org/10.1007/978-0-387-77240-0_10.
  • Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google earth engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031
  • Gornott, C., & Wechsung, F. (2016). Statistical regression models for assessing climate impacts on crop yields: A validation study for winter wheat and silage maize in Germany. Agricultural and Forest Meteorology, 217, 89–100. https://doi.org/10.1016/j.agrformet.2015.10.005
  • Green, T. R., Kipka, H., David, O., & McMaster, G. S. (2018). Where is the USA corn Belt, and how is it changing? Science of the Total Environment, 618, 1613–1618. https://doi.org/10.1016/j.scitotenv.2017.09.325
  • Guan, K., Sultan, B., Biasutti, M., Baron, C., & Lobell, D. B. (2017). Assessing climate adaptation options and uncertainties for cereal systems in West Africa. Agricultural and Forest Meteorology, 232, 291–305. https://doi.org/10.1016/j.agrformet.2016.07.021
  • Huang, Z., & Liu, Z. (2022). A complex terrain simulation approach using ensemble learning of random forest regression. Journal of the Indian Society of Remote Sensing, 50(10), 2011–2023. https://doi.org/10.1007/s12524-022-01585-w
  • Jeong, J. H., Resop, J. P., Mueller, N. D., Fleisher, D. H., Yun, K., Butler, E. E., Timlin, D. J., Shim, K. M., Gerber, J. S., Reddy, V. R., Kim, S. H., & Gonzalez-Andujar, J. L. (2016). Random forests for global and regional crop yield predictions. PLoS One, 11(6), e0156571. https://doi.org/10.1371/journal.pone.0156571
  • Jin, X., Zarco-Tejada, P. J., Schmidhalter, U., Reynolds, M. P., Hawkesford, M. J., Varshney, R. K., Yang, T., Nie, C., Li, Z., & Ming, B. (2020). High-throughput estimation of crop traits: A review of ground and aerial phenotyping platforms. IEEE Geoscience and Remote Sensing Magazine, 9(1), 200–231. https://doi.org/10.1109/MGRS.2020.2998816
  • Johnson, M. D., Hsieh, W. W., Cannon, A. J., Davidson, A., & Bedard, F. (2016). Crop yield forecasting on the Canadian Prairies by remotely sensed vegetation indices and machine learning methods. Agricultural and Forest Meteorology, 218, 74–84. https://doi.org/10.1016/j.agrformet.2015.11.003
  • Jones, J. W., Antle, J. M., Basso, B., Boote, K. J., Conant, R. T., Foster, I., Godfray, H. C. J., Herrero, M., Howitt, R. E., Janssen, S., Keating, B. A., Munoz-Carpena, R., Porter, C. H., Rosenzweig, C., & Wheeler, T. R. (2017). Brief history of agricultural systems modeling. Agricultural Systems, 155, 240–254. https://doi.org/10.1016/j.agsy.2016.05.014
  • Kern, A., Barcza, Z., Marjanovic, H., Arendas, T., Fodor, N., Bonis, P., Bognar, P., & Lichtenberger, J. (2018). Statistical modelling of crop yield in central Europe using climate data and remote sensing vegetation indices. Agricultural and Forest Meteorology, 260, 300–320. https://doi.org/10.1016/j.agrformet.2018.06.009
  • Khaki, S., & Wang, L. (2019). Crop yield prediction using deep neural networks. Frontiers in Plant Science, 10, 621. https://doi.org/10.3389/fpls.2019.00621
  • Khanal, S., Fulton, J., Klopfenstein, A., Douridas, N., & Shearer, S. (2018). Integration of high resolution remotely sensed data and machine learning techniques for spatial prediction of soil properties and corn yield. Computers and Electronics in Agriculture, 153, 213–225. https://doi.org/10.1016/j.compag.2018.07.016
  • Khan, K., Iqbal, J., Ali, A., & Khan, S. (2020). Assessment of sentinel-2-derived vegetation indices for the estimation of above-ground biomass/carbon stock, temporal deforestation and carbon emissions estimation in the moist temperate forests of Pakistan. Applied Ecology and Environmental Research, 18(1), 783–815. https://doi.org/10.15666/aeer/1801_783815
  • Khan, S. N., Li, D., & Maimaitijiang, M. (2022). A geographically weighted random forest approach to predict corn yield in the US corn Belt. Remote Sensing, 14(12), 2843. https://doi.org/10.3390/rs14122843
  • Krasnova, T., Khan, S. N., Pozdnyakov, A., & Vilgelm, A. (2021). Determinants of regional agroindustry and spillovers between Siberian local markets. In E3S Web of Conferences, Russia (pp. 01015). EDP Sciences
  • Kunapuli, S. S., Rueda-Ayala, V., Benavídez-Gutiérrez, G., Córdova-Cruzatty, A., Cabrera, A., Fernández, C., & Maiguashca, J. (2015). Yield prediction for precision territorial management in maize using spectral data. In Precision agriculture’15 (pp. 344–358). Wageningen Academic Publishers. https://doi.org/10.3920/978-90-8686-814-8_24
  • Li, P., Tariq, A., Li, Q., Ghaffar, B., Farhan, M., Jamil, A., Soufan, W., El Sabagh, A., & Freeshah, M. (2023). Soil erosion assessment by RUSLE model using remote sensing and GIS in an arid zone. International Journal of Digital Earth, 16(1), 3105–3124. https://doi.org/10.1080/17538947.2023.2243916
  • Liu, J., Yang, K., Tariq, A., Lu, L., Soufan, W., & El Sabagh, A. (2023). Interaction of climate, topography and soil properties with cropland and cropping pattern using remote sensing data and machine learning methods. Egypt Journal of Remote Sensors Space Science, 26, 415–426. https://doi.org/10.1016/j.ejrs.2023.05.005
  • Marx, R. W. (1986). The TIGER system: Automating the geographic structure of the United States census. Government Publications Review, 13(2), 181–201. https://doi.org/10.1016/0277-9390(86)90003-8
  • Ma, Y., Zhang, Z., Kang, Y., & Özdoğan, M. (2021). Corn yield prediction and uncertainty analysis based on remotely sensed variables using a Bayesian neural network approach. Remote Sensing of Environment, 259, 112408. https://doi.org/10.1016/j.rse.2021.112408
  • McDonald, G. C. (2009). Ridge regression. Wiley Interdisciplinary Reviews: Computational Statistics, 1(1), 93–100. https://doi.org/10.1002/wics.14
  • Muller, C., Elliott, J., Chryssanthacopoulos, J., Arneth, A., Balkovic, J., Ciais, P., Deryng, D., Folberth, C., Glotter, M., Hoek, S., Iizumi, T., Izaurralde, R. C., Jones, C., Khabarov, N., Lawrence, P., Liu, W. F., Olin, S., Pugh, T. A. M. … Yang, H. (2017). Global gridded crop model evaluation: Benchmarking, skills, deficiencies and implications. Geoscientific Model Development, 10(4), 1403–1422. https://doi.org/10.5194/gmd-10-1403-2017
  • Olson, A. L. (2007). The Impact of Increased Ethanol Production on Corn Basis in South Dakota [Electronic Theses and Dissertations]. https://openprairie.sdstate.edu/etd/6027
  • Ostertagová, E. (2012). Modelling using polynomial regression. Procedia Engineering, 48, 500–506. https://doi.org/10.1016/j.proeng.2012.09.545
  • Pantazi, X. E., Moshou, D., Alexandridis, T., Whetton, R. L., & Mouazen, A. M. (2016). Wheat yield prediction using machine learning and advanced sensing techniques. Computers and Electronics in Agriculture, 121, 57–65. https://doi.org/10.1016/j.compag.2015.11.018
  • Pantazi, X. E., Moshou, D., & Bravo, C. (2016). Active learning system for weed species recognition based on hyperspectral sensing. Biosystems Engineering, 146, 193–202. https://doi.org/10.1016/j.biosystemseng.2016.01.014
  • Peng, B., Guan, K. Y., Chen, M., Lawrence, D. M., Pokhrel, Y., Suyker, A., Arkebauer, T., & Lu, Y. Q. (2018). Improving maize growth processes in the community land model: Implementation and evaluation. Agricultural and Forest Meteorology, 250, 64–89. https://doi.org/10.1016/j.agrformet.2017.11.012
  • Ramedani, Z., Omid, M., Keyhani, A., Shamshirband, S., & Khoshnevisan, B. (2014). Potential of radial basis function based support vector regression for global solar radiation prediction. Renewable and Sustainable Energy Reviews, 39, 1005–1011. https://doi.org/10.1016/j.rser.2014.07.108
  • Ranstam, J., & Cook, J. (2018). LASSO regression. The British Journal of Surgery, 105(10), 1348–1348. https://doi.org/10.1002/bjs.10895
  • Ranum, P., Peña‐Rosas, J. P., & Garcia‐Casal, M. N. (2014). Global maize production, utilization, and consumption. Annals of the New York Academy of Sciences, 1312(1), 105–112. https://doi.org/10.1111/nyas.12396
  • Russ, G., Kruse, R., Schneider, M., & Wagner, P. (2008). Data mining with neural networks for wheat yield prediction. In P. Perner (Eds.), Advances in data mining. Medical Applications, E-commerce, marketing, and theoretical aspects. ICDM 2008. Lecture notes in Computer Science (Vol. 5077, pp. 47). Springer. https://doi.org/10.1007/978-3-540-70720-2_4
  • Sagi, O., & Rokach, L. (2018). Ensemble learning: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(4), e1249. https://doi.org/10.1002/widm.1249
  • Shahhosseini, M., Hu, G., Huber, I., & Archontoulis, S. V. (2021). Coupling machine learning and crop modeling improves crop yield prediction in the US corn Belt. Scientific Reports, 11(1), 1–15. https://doi.org/10.1038/s41598-020-80820-1
  • Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14(3), 199–222. https://doi.org/10.1023/B:STCO.0000035301.49549.88
  • Son, N., Chen, C., Chen, C., Chang, L., Duc, H., & Nguyen, L. (2013). Prediction of rice crop yield using MODIS EVI− LAI data in the Mekong Delta, Vietnam. International Journal of Remote Sensing, 34(20), 7275–7292. https://doi.org/10.1080/01431161.2013.818258
  • Spedicato, G. A., Dutang, C., & Petrini, L. (2018). Machine learning methods to perform pricing optimization. A comparison with standard GLMs. Variance, 12, 69–89. http://www.ressources-actuarielles.net/EXT/ISFA/1226.nsf/0/2405c6a5afef8798c12582fe0046fc30/$FILE/Machine-Spedicato.pdf
  • Sun, J., Di, L. P., Sun, Z. H., Shen, Y. L., & Lai, Z. L. (2019). County-level soybean yield prediction using deep CNN-LSTM model. Sensors, 19(20), 4363. https://doi.org/10.3390/s19204363
  • Tariq, A., Hashemi Beni, L., Ali, S., Adnan, S., & Hatamleh, W. A. (2023). An effective geospatial-based flash flood susceptibility assessment with hydrogeomorphic responses on groundwater recharge. Groundwater for Sustainable Development, 23, 100998. https://doi.org/10.1016/j.gsd.2023.100998
  • Tariq, A., Jiango, Y., Li, Q., Gao, J., Lu, L., Soufan, W., Almutairi, K. F., & Habib-Ur-Rahman, M. (2023). Modelling, mapping and monitoring of forest cover changes, using support vector machine, kernel logistic regression and naive Bayes tree models with optical remote sensing data. Heliyon, 9(2), e13212. https://doi.org/10.1016/j.heliyon.2023.e13212
  • Tariq, A., & Mumtaz, F. (2022). Modeling spatio-temporal assessment of land use land cover of Lahore and its impact on land surface temperature using multi-spectral remote sensing data. Environmental Science and Pollution Research, 30(9), 23908–23924. https://doi.org/10.1007/s11356-022-23928-3
  • Tariq, A., Mumtaz, F., Majeed, M., & Zeng, X. (2023). Spatio-temporal assessment of land use land cover based on trajectories and cellular automata Markov modelling and its impact on land surface temperature of Lahore district Pakistan. Environmental Monitoring and Assessment, 195(1), 114. https://doi.org/10.1007/s10661-022-10738-w
  • Tariq, A., & Qin, S. (2023). Spatio-temporal variation in surface water in Punjab, Pakistan from 1985 to 2020 using machine-learning methods with time-series remote sensing data and driving factors. Agricultural Water Management, 280, 108228. https://doi.org/10.1016/j.agwat.2023.108228
  • Tariq, A., Yan, J., Gagnon, A. S., Riaz Khan, M., & Mumtaz, F. (2022). Mapping of cropland, cropping patterns and crop types by combining optical remote sensing images with decision tree classifier and random forest. Geo-Spatial Information Science, 1–19. https://doi.org/10.1080/10095020.2022.2100287
  • Todey, D., Trobec, J., & Mogil, H. M. (2009). South Dakota's Climate and Weather. Weatherwise: THE POWER, THE BEAUTY, THE EXCITEMENT, 62, 16–23.
  • Üstün, B., Melssen, W., & Buydens, L. (2007). Visualisation and interpretation of support vector regression models. Analytica chimica acta, 595(1–2), 299–309. https://doi.org/10.1016/j.aca.2007.03.023
  • van Klompenburg, T., Kassahun, A., & Catal, C. (2020). Crop yield prediction using machine learning: A systematic literature review. Computers and Electronics in Agriculture, 177, 105709. https://doi.org/10.1016/j.compag.2020.105709
  • Wahla, S. S., Kazmi, J. H., Sharifi, A., Shirazi, S. A., Tariq, A., & Joyell Smith, H. (2022). Assessing spatio-temporal mapping and monitoring of climatic variability using SPEI and RF machine learning models. Geocarto International, 37(27), 14963–14982. https://doi.org/10.1080/10106049.2022.2093411
  • Wairegi, L. W., Van Asten, P. J., Tenywa, M. M., & Bekunda, M. A. (2010). Abiotic constraints override biotic constraints in east African highland banana systems. Field Crops Research, 117(1), 146–153. https://doi.org/10.1016/j.fcr.2010.02.010
  • Wall, L., Larocque, D., & Léger, P. M. (2008). The early explanatory power of NDVI in crop yield modelling. International Journal of Remote Sensing, 29(8), 2211–2225. https://doi.org/10.1080/01431160701395252
  • Whetton, R., Zhao, Y. F., Shaddad, S., & Mouazen, A. M. (2017). Nonlinear parametric modelling to study how soil properties affect crop yields and NDVI. Computers and Electronics in Agriculture, 138, 127–136. https://doi.org/10.1016/j.compag.2017.04.016
  • Wieder, W., Shoop, S., Barna, L., Franz, T., & Finkenbiner, C. (2018). Comparison of soil strength measurements of agricultural soils in Nebraska. Journal of Terramechanics, 77, 31–48. https://doi.org/10.1016/j.jterra.2018.02.003
  • Xu, M., Watanachaturaporn, P., Varshney, P. K., & Arora, M. K. (2005). Decision tree regression for soft classification of remote sensing data. Remote Sensing of Environment, 97(3), 322–336. https://doi.org/10.1016/j.rse.2005.05.008