514
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Let the loss impartial: a hierarchical unbiased loss for small object segmentation in high-resolution remote sensing images

, , , , &
Article: 2254473 | Received 23 Dec 2022, Accepted 29 Aug 2023, Published online: 05 Sep 2023

References

  • Abdollahi, A., Pradhan, B., & Alamri, A. (2021). RoadVecNet: A new approach for simultaneous road network segmentation and vectorization from aerial and google earth imagery in a complex urban set-up. Giscience & Remote Sensing, 58(7), 1151–14. https://doi.org/10.1080/15481603.2021.1972713
  • Abid, N., Shahzad, M., Malik, M. I., Schwanecke, U., Ulges, A., Kovacs, G., & Shafait, F. (2021). UCL: Unsupervised curriculum learning for water body classification from remote sensing imagery. International Journal of Applied Earth Observation and Geoinformation, 105, 102568. https://doi.org/10.1016/j.jag.2021.102568
  • An, N., Domel, A. G., Zhou, J. X., Rafsanjani, A., & Bertoldi, K. (2020). Programmable hierarchical kirigami. Advanced Functional Materials, 30(6), 1906711. https://doi.org/10.1002/adfm.201906711
  • Bongiorno, C., Micciche, S., & Mantegna, R. N. (2022). Statistically validated hierarchical clustering: Nested partitions in hierarchical trees. Physica A-Statistical Mechanics and Its Applications, 593, 126933. https://doi.org/10.1016/j.physa.2022.126933
  • Chen, B. Y., Xia, M., Qian, M., & Huang, J. Q. (2022). Manet: A multi-level aggregation network for semantic segmentation of high-resolution remote sensing images. International Journal of Remote Sensing, 1–21. https://doi.org/10.1080/01431161.2022.2073795
  • Chen, L.-C., Papandreou, G., Schroff, F., & Adam, H. (2017). Rethinking atrous convolution for semantic image segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
  • Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., & Adam, H. (2018). Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV).
  • Chen, Z. Y., Wang, C., Li, J., Fan, W. T., Du, J. X., & Zhong, B. N. (2021). Adaboost-like end-to-end multiple lightweight U-nets for road extraction from optical remote sensing images. International Journal of Applied Earth Observation and Geoinformation, 100, 102341. https://doi.org/10.1016/j.jag.2021.102341
  • Chong, Q., Xu, J., Jia, F., Liu, Z., Yan, W., Wang, X., & Song, Y. (2022). A multiscale fuzzy dual-domain attention network for urban remote sensing image segmentation. International Journal of Remote Sensing, 43(14), 5480–5501. https://doi.org/10.1080/01431161.2022.2135413
  • Chong, Y. W., Chen, X. S., & Pan, S. M. (2022). Context union edge network for semantic segmentation of small-scale objects in very high-resolution remote sensing images. IEEE Geoscience and Remote Sensing Letters, 19, 1–5. https://doi.org/10.1109/LGRS.2020.3021210
  • Geiss, C., Zhu, Y., Qiu, C. P., Mou, L. C., Zhu, X. X., & Taubenbock, H. (2022). Deep relearning in the geospatial domain for semantic remote sensing image segmentation. IEEE Geoscience and Remote Sensing Letters, 19, 1–5. https://doi.org/10.1109/LGRS.2020.3031339
  • Guo, D. Z., Zhu, L. G., Lu, Y. H., Yu, H. K., & Wang, S. (2019). Small object sensitive segmentation of urban street scene with spatial adjacency between object classes. IEEE Transactions on Image Processing, 28(6), 2643–2653. https://doi.org/10.1109/TIP.2018.2888701
  • He, H. J., Gao, K. Y., Tan, W. K., Wang, L. Y., Chen, N., Ma, L. F., & Li, J. A. T. (2022). Super-resolving and composing building dataset using a momentum spatial-channel attention residual feature aggregation network. International Journal of Applied Earth Observation and Geoinformation, 111, 102826. https://doi.org/10.1016/j.jag.2022.102826
  • He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
  • Huang, D. S., Jiang, F. W., Li, K. P., Tong, G. S., & Zhou, G. F. (2022). Scaled PCA: A new approach to dimension reduction. Management Science, 68(3), 1678–1695. https://doi.org/10.1287/mnsc.2021.4020
  • Kemker, R., Luu, R., & Kanan, C. (2018). Low-shot learning for the semantic segmentation of remote sensing imagery. IEEE Transactions on Geoscience and Remote Sensing, 56(10), 6214–6223. https://doi.org/10.1109/TGRS.2018.2833808
  • Kuang, Z. Z., Zhang, X., Yu, J., Li, Z. M., & Fan, J. P. (2021). Deep embedding of concept ontology for hierarchical fashion recognition. Neurocomputing, 425, 191–206. https://doi.org/10.1016/j.neucom.2020.04.085
  • Li, R., Zheng, S. Y., Duan, C. X., Su, J. L., & Zhang, C. (2022). Multistage attention resU-Net for semantic segmentation of fine-resolution remote sensing images. IEEE Geoscience and Remote Sensing Letters, 19, 1–5. https://doi.org/10.1109/LGRS.2021.3063381
  • Li, R., Zheng, S. Y., Zhang, C., Duan, C. X., Su, J. L., Wang, L. B., & Atkinson, P. M. (2022). Multiattention network for semantic segmentation of fine-resolution remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–13. https://doi.org/10.1109/TGRS.2021.3093977
  • Li, X., He, H., Li, X., Li, D., Cheng, G., Shi, J., Weng, L., Tong, Y., & Lin, Z. (2021). PointFlow: Flowing semantics through points for aerial image segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
  • Li, Y. Y., Huang, Q., Pei, X., Chen, Y. Q., Jiao, L. C., & Shang, R. H. (2021). Cross-layer attention network for small object detection in remote sensing imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 2148–2161. https://doi.org/10.1109/JSTARS.2020.3046482
  • Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
  • Ma, A. L., Wang, J. J., Zhong, Y. F., & Zheng, Z. (2022). FactSeg: Foreground activation-driven small object semantic segmentation in large-scale remote sensing imagery. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–16. https://doi.org/10.1109/TGRS.2021.3097148
  • Mi, L., & Chen, Z. Z. (2020). Superpixel-enhanced deep neural forest for remote sensing image semantic segmentation. ISPRS Journal of Photogrammetry and Remote Sensing, 168, 153–155. https://doi.org/10.1016/j.isprsjprs.2020.08.015
  • Neupane, B., Horanont, T., & Aryal, J. (2021). Deep learning-based semantic segmentation of urban features in satellite images: A review and meta-analysis. Remote Sensing, 13(4), 808. https://doi.org/10.3390/rs13040808
  • Rabbi, J., Ray, N., Schubert, M., Chowdhury, S., & Chao, D. (2020). Small-object detection in remote sensing images with end-to-end edge-enhanced GAN and object detector network. Remote Sensing, 12(9), 1432. https://doi.org/10.3390/rs12091432
  • Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-assisted Intervention (MICCAI).
  • Sabzi, S., Javadikia, P., Rabani, H., & Adelkhani, A. (2013). Mass modeling of Bam orange with ANFIS and SPSS methods for using in machine vision. Measurement, 46(9), 3333–3341. https://doi.org/10.1016/j.measurement.2013.06.005
  • Schuegraf, P., & Bittner, K. (2019). Automatic building footprint extraction from multi-resolution remote sensing images using a hybrid FCN. ISPRS International Journal of Geo-Information, 8(4), 191. https://doi.org/10.3390/ijgi8040191
  • Segl, K., & Kaufmann, H. (2001). Detection of small objects from high-resolution panchromatic satellite imagery based on supervised image segmentation. IEEE Transactions on Geoscience and Remote Sensing, 39(9), 2080–2083. https://doi.org/10.1109/36.951105
  • Song, P., Li, J., An, Z., Fan, H., & Fan, L. (2023). Ctmfnet: CNN and Transformer multi-scale fusion network of remote sensing urban scene imagery. IEEE Transactions on Geoscience and Remote Sensing, 61, 1–14. https://doi.org/10.1109/TGRS.2022.3232143
  • Strudel, R., Ricardo, G., Ivan, L., & Cordelia, S. (2021). Segmenter: Transformer for semantic segmentation. In Proceedings of the IEEE International Conference on Computer Vision (ICCV).
  • Tao, C. X., Meng, Y. Z., Li, J. J., Yang, B. B., Hu, F. M., Li, Y. X., Cui, C. L., & Zhang, W. (2022). Msnet: Multispectral semantic segmentation network for remote sensing images. Giscience & Remote Sensing, 59(1), 1177–1198. https://doi.org/10.1080/15481603.2022.2101728
  • Tian, T., Chu, Z. Q., Hu, Q., & Ma, L. (2021). Class-wise fully convolutional network for semantic segmentation of remote sensing images. Remote Sensing, 13(16), 3211. https://doi.org/10.3390/rs13163211
  • Tuia, D., Munoz-Mari, J., & Camps-Valls, G. (2012). Remote sensing image segmentation by active queries. Pattern Recognition, 45(6), 2180–2192. https://doi.org/10.1016/j.patcog.2011.12.012
  • Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Proceedings of the Neural Information Processing Systems (NIPS).
  • Wang, L., Li, R., Zhang, C., Fang, S., Duan, C., Meng, X., & Atkinson, P. M. (2023). UNetFormer: A UNet-like transformer for efficient semantic segmentation of remote sensing urban scene imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 190, 196–214. https://doi.org/10.1016/j.isprsjprs.2022.06.008
  • Wang, Y., Sun, Z. C., & Zhao, W. (2021). Encoder- and decoder-based networks using multiscale feature fusion and nonlocal block for remote sensing image semantic segmentation. IEEE Geoscience and Remote Sensing Letters, 18(7), 1159–1163. https://doi.org/10.1109/LGRS.2020.2998680
  • Woo, S., Park, J., Lee, J.-Y., & Kweon, I. S. (2018). CBAM: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV).
  • Xia, G.-S., Bai, X., Ding, J., Zhu, Z., Belongie, S., Luo, J., Datcu, M., Pelillo, M., & Zhang, L. (2018). DOTA: A large-scale dataset for object detection in aerial images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
  • Yi, L., Zhang, G. F., & Wu, Z. C. (2012). A scale-synthesis method for high spatial resolution remote sensing image segmentation. IEEE Transactions on Geoscience and Remote Sensing, 50(10), 4062–4070. https://doi.org/10.1109/TGRS.2012.2187789
  • Yuan, J. Y., Gleason, S. S., & Cheriyadat, A. M. (2013). Systematic benchmarking of aerial image segmentation. IEEE Geoscience and Remote Sensing Letters, 10(6), 1527–1531. https://doi.org/10.1109/LGRS.2013.2261453
  • Zhang, C., Jiang, W. S., Zhang, Y., Wang, W., Zhao, Q., & Wang, C. J. (2022). Transformer and CNN hybrid deep neural network for semantic segmentation of very-high-resolution remote sensing imagery. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–20. https://doi.org/10.1109/TGRS.2022.3144894
  • Zhang, D. D., Wang, C. P., & Fu, Q. (2022). Near-shore ship segmentation based on I-Polar mask in remote sensing. International Journal of Remote Sensing, 43(9), 3470–3489. https://doi.org/10.1080/01431161.2022.2095878
  • Zhang, X. L., Xiao, P. F., Feng, X. Z., Wang, J. G., & Wang, Z. (2014). Hybrid region merging method for segmentation of high-resolution remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing, 98, 19–28. https://doi.org/10.1016/j.isprsjprs.2014.09.011
  • Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2017). Pyramid scene parsing network. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1016/j.isprsjprs.2014.09.011
  • Zhao, T. Y., Xu, J. D., Chen, R., & Ma, X. Y. (2021). Remote sensing image segmentation based on the fuzzy deep convolutional neural network. International Journal of Remote Sensing, 42(16), 6267–6286. https://doi.org/10.1080/01431161.2021.1938738