950
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Crop water use dynamics over arid and semi-arid croplands in the lower Colorado River Basin

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , & ORCID Icon show all
Article: 2259244 | Received 07 Feb 2023, Accepted 11 Sep 2023, Published online: 25 Sep 2023

References

  • Abbasi, N., Nouri, H., Didan, K., Barreto-Muñoz, A., Chavoshi Borujeni, S., & Opp, C., P. Nagler, P., Thenkabail, S., and Siebert, S. (2023). Mapping vegetation index-derived actual evapotranspiration across croplands using the Google Earth Engine platform. Remote Sensing, 15(4), 1017. https://doi.org/10.3390/rs15041017
  • Abbasi, N., Nouri, H., Didan, K., Barreto-Muñoz, A., Chavoshi Borujeni, S., Salemi, H., Opp, C., Siebert, S., & Nagler, P. (2021). Estimating actual evapotranspiration over croplands using vegetation index methods and dynamic harvested area. Remote Sensing, 13(24), 5167. https://doi.org/10.3390/rs13245167
  • Adamides, G. (2020). A review of climate-smart agriculture applications in cyprus. Atmosphere, 11(9), 898. https://doi.org/10.3390/atmos11090898
  • Allen, R. (2000). Using the FAO-56 dual crop coefficient method over an irrigated region as part of an evapotranspiration intercomparison study. Journal of Hydrology, 229(1–2), 27–22. https://doi.org/10.1016/s0022-1694(99)00194-8
  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration: Guidelines for computing crop water requirements. Of FAO Irrigation and Drainage Paper, 56, 0254–5284. https://www.fao.org/3/x0490e/x0490e00.htm
  • Allen, R. G., Tasumi, M., & Trezza, R. (2007). Satellite-based energy balance for mapping evapotranspiration with internalized calibration (metric)‐-model. Journal of Irrigation & Drainage Engineering, 133(4), 380–394. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380)
  • Amani, M., Ghorbanian, A., Ahmadi, S. A., Kakooei, M., Moghimi, A., Mirmazloumi, S. M., Moghaddam, S. H. A., Mahdavi, S., Ghahremanloo, M., Parsian, S., Wu, Q., & Brisco, B. (2020). Google Earth Engine cloud computing platform for remote sensing big data applications: A comprehensive review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 5326–5350. https://doi.org/10.1109/JSTARS.2020.3021052
  • Anderson, M. C., Allen, R. G., Morse, A., & Kustas, W. P. (2012). Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sensing of Environment, 122, 50–65. https://doi.org/10.1016/j.rse.2011.08.025
  • Anderson, M., Gao, F., Knipper, K., Hain, C., Dulaney, W., Baldocchi, D., Eichelmann, E., Hemes, K., Yang, Y., Medellin-Azuara, J., & Kustas, W. (2018). Field-scale assessment of land and water use change over the California Delta using remote sensing. Remote Sensing, 10(6), 889. https://doi.org/10.3390/rs10060889
  • Anderson, M. C., Kustas, W. P., Alfieri, J. G., Gao, F., Hain, C., Prueger, J. H., Evett, S., Colaizzi, P., Howell, T., & Chávez, J. L. (2012). Mapping daily evapotranspiration at Landsat spatial scales during the BEAREX’08 field campaign. Advances in Water Resources, 50, 162–177. https://doi.org/10.1016/j.advwatres.2012.06.005
  • Ayyad, S., Al Zayed, I. S., van Ha, T. T., & Ribbe, L. (2019). The performance of satellite-based actual evapotranspiration products and the assessment of irrigation efficiency in egypt. Water, 11(9), 1913. https://doi.org/10.3390/w11091913
  • Barasa, P. M., Botai, C. M., Botai, J. O., & Mabhaudhi, T. (2021). A review of climate-smart agriculture research and applications in Africa. Agronomy, 11(6), 1255. https://doi.org/10.3390/agronomy11061255
  • Bastiaanssen, W. G. M., Menenti, M., Feddes, R. A., & Holtslag, A. A. M. (1998). A remote sensing surface energy balance algorithm for land (SEBAL): 1. Formulation. Journal of Hydrology, 212-213, 198–212. https://doi.org/10.1016/s0022-1694(98)00253-4
  • Bhattacharya, A. (2019). Water-use efficiency under changing climatic conditions. In changing climate and resource use efficiency in plants (pp. 111–180). Amsterdam, The Netherlands: Elsevier. https://doi.org/10.1016/B978-0-12-816209-5.00003-9
  • Biggs, T. W., Marshall, M., & Messina, A. (2016). Mapping daily and seasonal evapotranspiration from irrigated crops using global climate grids and satellite imagery: Automation and methods comparison. Water Resources Research, 52(9), 7311–7326. https://doi.org/10.1002/2016WR019107
  • Biggs, T. W., Petropoulos, G. P., Velpuri, N. M., Marshall, M., Glenn, E. P., Nagler, P. L., & Messina, A. 2015. Remote sensing of actual evapotranspiration from cropland. Remote sensing handbook: Remote sensing of water resources, disasters, and urban studies, Prasad S. Thenkabail. CRC Press. Available online at http://pubs.er.usgs.gov/publication/70176490.
  • Calera, A., Campos, I., Osann, A., D’Urso, G., & Menenti, M. (2017). Remote sensing for crop water management: From ET modelling to services for the end users. Sensors (Basel, Switzerland), 17(5), 1104. https://doi.org/10.3390/s17051104
  • Cohen, M., Christian-Smith, J., & Berggren, J. (2013). Water to supply the land irrigated agriculture in the colorado river basin. Pacific Institute.
  • Dile, Y. T., Ayana, E. K., Worqlul, A. W., Xie, H., Srinivasan, R., Lefore, N., You, L., & Clarke, N. (2020). Evaluating satellite-based evapotranspiration estimates for hydrological applications in data-scarce regions: A case in Ethiopia. The Science of the Total Environment, 743, 140702. https://doi.org/10.1016/j.scitotenv.2020.140702
  • El Ghandour, F.-E., Alfieri, S. M., Houali, Y., Habib, A., Akdim, N., Labbassi, K., & Menenti, M. (2019). Detecting the response of irrigation water management to climate by remote sensing monitoring of evapotranspiration. Water, 11(10), 2045. https://doi.org/10.3390/w11102045
  • Falalakis, G., & Gemitzi, A. (2020). A simple method for water balance estimation based on the empirical method and remotely sensed evapotranspiration estimates. Journal of Hydroinformatics, 22(2), 440–451. https://doi.org/10.2166/hydro.2020.182
  • FAO. (2020) . Wapor database methodology.
  • Fisher, J. B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R., McCabe, M. F., Hook, S., Baldocchi, D., Townsend, P. A., Kilic, A., Tu, K., Miralles, D. D., Perret, J., Lagouarde, J.-P., Waliser, D., Purdy, A. J., French, A. … Stephens, G. (2017). The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resources Research, 53(4), 2618–2626. https://doi.org/10.1002/2016WR020175
  • Fisher, J. B., Tu, K. P., & Baldocchi, D. D. (2008). Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sensing of Environment, 112(3), 901–919. https://doi.org/10.1016/j.rse.2007.06.025
  • French, A. N., Hunsaker, D. J., Sanchez, C. A., Saber, M., Gonzalez, J. R., & Anderson, R. (2020). Satellite-based NDVI crop coefficients and evapotranspiration with eddy covariance validation for multiple durum wheat fields in the US southwest. Agricultural Water Management, 239, 106266. https://doi.org/10.1016/j.agwat.2020.106266
  • Garrick, D., de Stefano, L., Pittock, J., & Connell, D. (2014). Transboundary water management in federal political systems: A story of three semi-arid rivers (pp. 343–353). https://doi.org/10.1007/978-3-319-07548-8_22
  • Githui, F., Selle, B., & Thayalakumaran, T. (2012). Recharge estimation using remotely sensed evapotranspiration in an irrigated catchment in southeast Australia. Hydrological Processes, 26(9), 1379–1389. https://doi.org/10.1002/hyp.8274
  • Glenn, E. P., Nagler, P. L., & Huete, A. R. (2010). Vegetation index methods for estimating evapotranspiration by remote sensing. Surveys in Geophysics, 31(6), 531–555. https://doi.org/10.1007/s10712-010-9102-2
  • González-Dugo, M. P., & Mateos, L. (2008). Spectral vegetation indices for benchmarking water productivity of irrigated cotton and sugarbeet crops. Agricultural Water Management, 95(1), 48–58. https://doi.org/10.1016/j.agwat.2007.09.001
  • Guerschman, J. P., McVicar, T. R., Vleeshower, J., van Niel, T. G., Peña-Arancibia, J. L., & Chen, Y. (2022). Estimating actual evapotranspiration at field-to-continent scales by calibrating the CMRSET algorithm with MODIS, VIIRS, Landsat and Sentinel-2 data. Journal of Hydrology, 605, 127318. https://doi.org/10.1016/j.jhydrol.2021.127318
  • Irmak, A., Ratcliffe, I., Ranade, P., Hubbard, K. G., Singh, R. K., Kamble, B., & Kjaersgaard, J. (2011). Estimation of land surface evapotranspiration with a satellite remote sensing procedure. Great Plains Research, 21(1), 73–88. http://www.jstor.org/stable/23779969
  • Jaafar, H., Mourad, R., & Schull, M. (2022). A global 30-m ET model (HSEB) using harmonized Landsat and Sentinel-2, MODIS and VIIRS: Comparison to ECOSTRESS ET and LST. Remote Sensing of Environment, 274, 112995. https://doi.org/10.1016/j.rse.2022.112995
  • Jamshidi, S., Zand-Parsa, S., & Niyogi, D. (2021). Assessing crop water stress index of citrus using in-situ measurements, Landsat, and Sentinel-2 data. International Journal of Remote Sensing, 42(5), 1893–1916. https://doi.org/10.1080/01431161.2020.1846224
  • Jamshidi, S., Zand-Parsa, S., Pakparvar, M., & Niyogi, D. (2019). Evaluation of evapotranspiration over a semiarid region using multiresolution data sources. Journal of Hydrometeorology, 20(5), 947–964. https://doi.org/10.1175/JHM-D-18-0082.1
  • Johnson, L. F., & Trout, T. J. (2012). Satellite NDVI assisted monitoring of vegetable crop evapotranspiration in California’s San Joaquin Valley. Remote Sensing, 4(2), 439–455. https://doi.org/10.3390/rs4020439
  • Laipelt, L., Henrique Bloedow Kayser, R., Santos Fleischmann, A., Ruhoff, A., Bastiaanssen, W., Erickson, T. A., & Melton, F. (2021). Long-term monitoring of evapotranspiration using the SEBAL algorithm and Google Earth Engine cloud computing. ISPRS Journal of Photogrammetry and Remote Sensing, 178, 81–96. https://doi.org/10.1016/j.isprsjprs.2021.05.018
  • Lipper, L., Thornton, P., Campbell, B. M., Baedeker, T., Braimoh, A., Bwalya, M., Caron, P., Cattaneo, A., Garrity, D., Henry, K., Hottle, R., Jackson, L., Jarvis, A., Kossam, F., Mann, W., McCarthy, N., Meybeck, A., Neufeldt, H. … Tibu, A. (2014). Climate-smart agriculture for food security. Nature Climate Change, 4(12), 1068–1072. https://doi.org/10.1038/NCLIMATE2437
  • Melton, F. S., Huntington, J., Grimm, R., Herring, J., Hall, M., Rollison, D., Erickson, T., Allen, R., Anderson, M., Fisher, J. B. et al. (2021). Openet: Filling a critical data gap in water management for the western united states, JAWRA Journal of the American Water Resources Association. https://doi.org/10.1111/1752-1688.12956
  • Meza, I., Eyshi Rezaei, E., Siebert, S., Ghazaryan, G., Nouri, H., Dubovyk, O., Gerdener, H., Herbert, C., Kusche, J., Popat, E., Rhyner, J., Jordaan, A., Walz, Y., & Hagenlocher, M. (2021). Drought risk for agricultural systems in South Africa: Drivers, spatial patterns, and implications for drought risk management. The Science of the Total Environment, 799, 149505. https://doi.org/10.1016/j.scitotenv.2021.149505
  • Mhawej, M., & Faour, G. (2020). Open-source Google Earth Engine 30-m evapotranspiration rates retrieval: The SEBALIGEE system. Environmental Modelling & Software, 133, 104845. https://doi.org/10.1016/j.envsoft.2020.104845
  • Mueller, B., Seneviratne, S. I., Jimenez, C., Corti, T., Hirschi, M., Balsamo, G., Ciais, P., Dirmeyer, P., Fisher, J. B., Guo, Z., Jung, M., Maignan, F., McCabe, M. F., Reichle, R., Reichstein, M., Rodell, M., Sheffield, J., Teuling, A. J. … Wood, E. F. (2011). Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations. Geophysical Research Letters, 38(6), n/a–n/a. https://doi.org/10.1029/2010GL046230
  • Naghdyzadegan Jahromi, M., Zand-Parsa, S., Razzaghi, F., Jamshidi, S., Didari, S., Doosthosseini, A., & Pourghasemi, H. R. (2023). Developing machine learning models for wheat yield prediction using ground-based data, satellite-based actual evapotranspiration and vegetation indices. The European Journal of Agronomy, 146, 126820. https://doi.org/10.1016/j.eja.2023.126820
  • Nagler, P., Glenn, E., Nguyen, U., Scott, R., & Doody, T. (2013). Estimating riparian and agricultural actual evapotranspiration by reference evapotranspiration and MODIS enhanced vegetation index. Remote Sensing, 5(8), 3849–3871. https://doi.org/10.3390/rs5083849
  • Nagler, P., Morino, K., Murray, R. S., Osterberg, J., & Glenn, E. (2009). An empirical algorithm for estimating agricultural and riparian evapotranspiration using MODIS enhanced vegetation index and ground measurements of ET. I. Description of method. Remote Sensing, 1(4), 1273–1297. https://doi.org/10.3390/rs1041273
  • Nhamo, L., Ebrahim, G. Y., Mabhaudhi, T., Mpandeli, S., Magombeyi, M., Chitakira, M., Magidi, J., & Sibanda, M. (2020). An assessment of groundwater use in irrigated agriculture using multi-spectral remote sensing. Physics and Chemistry of the Earth, Parts A/B/C, 115, 102810. https://doi.org/10.1016/j.pce.2019.102810
  • Niyogi, D., Jamshidi, S., Smith, D., & Kellner, O. (2020). Evapotranspiration climatology of Indiana using in situ and remotely sensed products. Journal of Applied Meteorology and Climatology, 59(12), 2093–2111. https://doi.org/10.1175/JAMC-D-20-0024.1
  • Nouri, H., Nagler, P., Chavoshi Borujeni, S., Barreto Munez, A., Alaghmand, S., Noori, B., Galindo, A., & Didan, K. (2020). Effect of spatial resolution of satellite images on estimating the greenness and evapotranspiration of urban green spaces. Hydrological Processes, 34(15), 3183–3199. https://doi.org/10.1002/hyp.13790
  • Pan, S., Pan, N., Tian, H., Friedlingstein, P., Sitch, S., Shi, H., Arora, V. K., Haverd, V., Jain, A. K., Kato, E., Lienert, S., Lombardozzi, D., Nabel, J. E. M. S., Ottlé, C., Poulter, B., Zaehle, S., & Running, S. W. (2020). Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling. Hydrology and Earth System Sciences, 24(3), 1485–1509. https://doi.org/10.5194/hess-24-1485-2020
  • Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, Y.-W., Poindexter, C., Chen, J., Elbashandy, A., Humphrey, M., Isaac, P., Polidori, D., Reichstein, M., Ribeca, A., van Ingen, C., Vuichard, N., Zhang, L., Amiro, B. … Torn, M. (2020). The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Scientific Data, 7(1), 225. https://doi.org/10.1038/s41597-020-0534-3
  • Peña-Arancibia, J. L., Mainuddin, M., Kirby, J. M., Chiew, F. H. S., McVicar, T. R., & Vaze, J. (2016). Assessing irrigated agriculture’s surface water and groundwater consumption by combining satellite remote sensing and hydrologic modelling. The Science of the Total Environment, 542(Pt A), 372–382. https://doi.org/10.1016/j.scitotenv.2015.10.086
  • Peña-Arancibia, J. L., McVicar, T. R., Paydar, Z., Li, L., Guerschman, J. P., Donohue, R. J., Dutta, D., Podger, G. M., van Dijk, A. I., & Chiew, F. H. (2014). Dynamic identification of summer cropping irrigated areas in a large basin experiencing extreme climatic variability. Remote Sensing of Environment, 154, 139–152. https://doi.org/10.1016/j.rse.2014.08.016
  • Pereira, L. S., Paredes, P., Hunsaker, D. J., López-Urrea, R., & Mohammadi Shad, Z. (2021). Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method. Agricultural Water Management, 243, 106466. https://doi.org/10.1016/j.agwat.2020.106466
  • Pereira, L. S., Paredes, P., Melton, F., Johnson, L., Wang, T., López-Urrea, R., Cancela, J. J., & Allen, R. G. (2020). Prediction of crop coefficients from fraction of ground cover and height. Background and validation using ground and remote sensing data. Agricultural Water Management, 241, 106197. https://doi.org/10.1016/j.agwat.2020.106197
  • Poudel, U., Stephen, H., & Ahmad, S. (2021). Evaluating irrigation performance and water productivity using EEFlux ET and NDVI. Sustainability, 13(14), 7967. https://doi.org/10.3390/su13147967
  • QGIS. (2021). QGIS geographic information system. QGIS Association. http://www.qgis.org
  • Ramón-Reinozo, M., Ballari, D., Cabrera, J. J., Crespo, P., & Carrillo-Rojas, G. (2019). Altitudinal and temporal evapotranspiration dynamics via remote sensing and vegetation index-based modelling over a scarce-monitored, high-altitudinal Andean páramo ecosystem of Southern Ecuador. Environmental Earth Sciences, 78(11). https://doi.org/10.1007/s12665-019-8337-6
  • Reyes-González, A., Kjaersgaard, J., Trooien, T., Hay, C., & Ahiablame, L. (2018). Estimation of crop evapotranspiration using satellite remote sensing-based vegetation index. Advances in Meteorology, 2018, 1–12. https://doi.org/10.1155/2018/4525021
  • Roy, T., Gupta, H. V., Serrat-Capdevila, A., & Valdes, J. B. (2017). Using satellite-based evapotranspiration estimates to improve the structure of a simple conceptual rainfall–runoff model. Hydrology and Earth System Sciences, 21(2), 879–896. https://doi.org/10.5194/hess-21-879-2017
  • Schauer, M., & Senay, G. B. (2019). Characterizing crop water use dynamics in the Central Valley of California using Landsat-derived evapotranspiration. Remote Sensing, 11(15), 1782. https://doi.org/10.3390/rs11151782
  • Senay, G. B., Bohms, S., Singh, R. K., Gowda, P. H., Velpuri, N. M., Alemu, H., & Verdin, J. P. (2013). Operational evapotranspiration mapping using remote sensing and weather datasets: A new parameterization for the sseb approach. JAWRA Journal of the American Water Resources Association, 49(3), 577–591. https://doi.org/10.1111/jawr.12057
  • Senay, G. B., Friedrichs, M., Morton, C., Parrish, G. E., Schauer, M., Khand, K., Kagone, S., Boiko, O., & Huntington, J. (2022). Mapping actual evapotranspiration using Landsat for the conterminous United States: Google Earth Engine implementation and assessment of the SSEBop model. Remote Sensing of Environment, 275, 113011. https://doi.org/10.1016/j.rse.2022.113011
  • Senay, G. B., Schauer, M., Friedrichs, M., Velpuri, N. M., & Singh, R. K. (2017). Satellite-based water use dynamics using historical Landsat data (1984–2014) in the southwestern United States. Remote Sensing of Environment, 202, 98–112. https://doi.org/10.1016/j.rse.2017.05.005
  • Sishodia, R. P., Ray, R. L., & Singh, S. K. (2020). Applications of remote sensing in precision agriculture: A review. Remote Sensing, 12(19), 3136. https://doi.org/10.3390/rs12193136
  • The State of the Rockies Project 2011-12 Research Team. 2012. The Colorado River basin: An overview. https://www.coloradocollege.edu/dotAsset/e57e7c73-2983-477b-a05d-de0ba0b87a00.pdf.
  • Stevens, L. E., Jenness, J., & Ledbetter, J. D. (2020). Springs and springs-dependent taxa of the Colorado River basin, southwestern North America: Geography, ecology and human impacts. Water, 12(5), 1501. https://doi.org/10.3390/w12051501
  • Sullivan, A., White, D. D., & Hanemann, M. (2019). Designing collaborative governance: Insights from the drought contingency planning process for the lower Colorado River basin. Environmental Science & Policy, 91, 39–49. https://doi.org/10.1016/j.envsci.2018.10.011
  • Wanniarachchi, S., & Sarukkalige, R. (2022). A review on evapotranspiration estimation in agricultural water management: Past, present, and future. Hydrology, 9(7), 123. https://doi.org/10.3390/hydrology9070123
  • Zare, M., Pakparvar, M., Jamshidi, S., Bazrafshan, O., & Ghahari, G. (2021). Optimizing the runoff estimation with HEC-HMS model using spatial evapotranspiration by the SEBS model. Water Resources Management, 35(8), 2633–2648. https://doi.org/10.1007/s11269-021-02855-x