324
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Modelling in-ground wood decay using time-series retrievals from the 5th European climate reanalysis (ERA5-Land)

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2264473 | Received 26 Jan 2023, Accepted 24 Sep 2023, Published online: 07 Nov 2023

References

  • A’Bear, A. D., Jones, T. H., Kandeler, E., & Boddy, L. (2014). Interactive effects of temperature and soil moisture on fungal-mediated wood decomposition and extracellular enzyme activity. Soil Biology and Biochemistry, 70, 151–14. https://doi.org/10.1016/j.soilbio.2013.12.017
  • Ågren, A. M., Larson, J., Paul, S. S., Laudon, H., & Lidberg, W. (2021). Use of multiple LIDAR-derived digital terrain indices and machine learning for high-resolution national-scale soil moisture mapping of the Swedish forest landscape. Geoderma, 404, 115280. https://doi.org/10.1016/j.geoderma.2021.115280
  • AWPA E7-15 Standard Field Test for Evaluation of Wood Preservatives to be Used in Ground Contact (UC4A, UC4B, UC4C). (2015) . Stake test. American Wood Protection Association (AWPA/WOOD).
  • Baker, R. E., Peña, J.-M., Jayamohan, J., & Jérusalem, A. (2018). Mechanistic models versus machine learning, a fight worth fighting for the biological community? Biology Letters, 14(5), 20170660. https://doi.org/10.1098/rsbl.2017.0660
  • Brischke, C., Alfredsen, G., Humar, M., Conti, E., Cookson, L., Emmerich, L., Flæte, P. O., Fortino, S., Francis, L., Hundhausen, U., Irbe, I., Jacobs, K., Klamer, M., Kržišnik, D., Lesar, B., Melcher, E., Meyer-Veltrup, L., Morrell, J. J., Norton, J. Suttie, E. (2021). Modelling the material resistance of wood—part 3: Relative resistance in above- and in-ground situations—results of a Global survey. Forests, 12(5), 18. https://doi.org/10.3390/f12050590
  • Brischke, C., & Rapp, A. O. (2008). Dose–response relationships between wood moisture content, wood temperature and fungal decay determined for 23 European field test sites. Wood Science and Technology, 42(6), 507–518. https://doi.org/10.1007/s00226-008-0191-8
  • Brischke, C., & Selter, V. (2020). Mapping the decay hazard of wooden structures in topographically divergent regions. Forests, 11(5), 510. https://doi.org/10.3390/f11050510
  • EN 252:2015. (2015) . Field test methods for determining the relative protective effectiveness of wood preservatives in ground contact. European Committee for Standardization (CEN).
  • EN 335:2013. (2013) . Durability of wood and wood-based products – use classes: Definition, application to solid wood and wood-based products. European Committee for Standardization (CEN).
  • European Commission, Copernicus, ECMWF, & Climate Change Service. (2022). Download data. ERA5-Land hourly data from 1950 to present. https://doi.org/10.24381/cds.e2161bac
  • Gonzales, J. M., & Morrell, J. J. (2012). Effects of environmental factors on decay rates of selected white- and brown-rot fungi. Wood and Fiber Science, 44(4), 343–356.
  • Hiscox, J., Clarkson, G., Savoury, M., Powell, G., Savva, I., Lloyd, M., Shipcott, J., Choimes, A., Amargant Cumbriu, X., & Boddy, L. (2016). Effects of pre-colonisation and temperature on interspecific fungal interactions in wood. Fungal Ecology, 21, 32–42. https://doi.org/10.1016/j.funeco.2016.01.011
  • IRG/WP. (2013). International Research Group on Wood Protection (IRG/WP)—Durability Database. https://irg-wp.com/durability/index.html#step3
  • Isaksson, T., Brischke, C., & Thelandersson, S. (2013). Development of decay performance models for outdoor timber structures. Materials and Structures, 46(7), 1209–1225. https://doi.org/10.1617/s11527-012-9965-4
  • Isaksson, T., Thelandersson, S., Jermer, J., & Brischke, C. (2014). Beständighet för utomhusträ ovan mark. Research Institutes of Sweden (RISE).
  • Kassambara, A. (2020). Ggpubr: ‘Ggplot2’ Based Publication Ready Plots. https://CRAN.R-project.org/package=ggpubr
  • Klaassen, R. K. W. M., & Creemers, J. G. M. (2012). Wooden foundation piles and its underestimated relevance for cultural heritage. Journal of Cultural Heritage, 13(3), S123–S128. https://doi.org/10.1016/j.culher.2012.02.014
  • Kuhn, M. (2008). Building predictive models in R using the caret package. Journal of Statistical Software, 28(5). https://doi.org/10.18637/jss.v028.i05
  • Lebow, S. T., & Highley, T. (2008). Regional biodeterioration hazards in the United States. In T.P. Schultz, H. Militz, M.H. Freeman, B. Goodell, & D.D. Nicholas (Eds.), Development of commercial wood preservatives: Efficacy, environmental, and health issues (Vol. 982, pp. 120–141). American Chemical Society. https://doi.org/10.1021/bk-2008-0982.ch006
  • Lidberg, W., Nilsson, M., & Ågren, A. (2020). Using machine learning to generate high-resolution wet area maps for planning forest management: A study in a boreal forest landscape. Ambio, 49(2), 475–486. https://doi.org/10.1007/s13280-019-01196-9
  • MacKenzie, C. E., Wang, C.-H., Leicester, R. H., Foliente, G. C., & Nguyen, M. N. (2007). Timber service life design guide. ISBN. Forest and Wood Products Australia.
  • Marais, B. N., Brischke, C., & Militz, H. (2020). Wood durability in terrestrial and aquatic environments – a review of biotic and abiotic influence factors. Wood Material Science & Engineering, 17(2), 82–105. https://doi.org/10.1080/17480272.2020.1779810
  • Marais, B. N., van Niekerk, P. B., & Brischke, C. (2021). Studies into fungal decay of wood in ground contact—part 2: Development of a dose–response model to predict decay rate. Forests, 12(6), 698. https://doi.org/10.3390/f12060698
  • Mendelsohn, R., Kurukulasuriya, P., Basist, A., Kogan, F., & Williams, C. (2007). Climate analysis with satellite versus weather station data. Climatic Change, 81(1), 71–83. https://doi.org/10.1007/s10584-006-9139-x
  • Microsoft Excel 2019. (2018). [Computer software]. Microsoft Corporation. https://office.microsoft.com/excel
  • Morrell, J. J. (2018). 14—Protection of wood-based materials. In M. Kutz Ed. Handbook of environmental degradation of materials Third, pp. 407–439. https://doi.org/10.1016/B978-1-4377-3455-3.00014-6.
  • Morrell, J. J., & Zabel, R. A. (1985). Wood strength and weight losses caused by soft rot fungi isolated from treated southern pine utility poles. Wood and Fiber Science, 17(1), 132–143.
  • Morton, L. H. G., & Eggins, H. O. W. (1977). The effect of constant, alternating & fluctuating temperatures on the growth on some wood inhabiting fungi. International Biodeterioration Bulletin, 13(4), 116–122.
  • Pousette, A., Malo, K. A., Thelandersson, S., Fortino, S., Salokangas, L., & Wacker, J. (2017). Durable timber bridges final report and guidelines ( SP Rapport 2017:25; p. 178).
  • Rapp, A. O., Peek, R. D., & Sailer, M. (2000). Modelling the moisture induced risk of decay for treated and untreated wood above ground. Holzforschung, 54(2), 111–118. https://doi.org/10.1515/HF.2000.019
  • R Core Team. (2022). R: A language and Environment for Statistical computing (4.2.0) [computer software]. R Foundation for Statistical Computing. https://www.R-project.org/
  • RStudio Team. (2022). RStudio: Integrated Development Environment for R (2022.07.0) [computer software]. RStudio, PBC. http://www.rstudio.com/
  • Salman, A. M., Salarieh, B., Bastidas-Arteaga, E., & Li, Y. (2020). Optimization of condition-based maintenance of wood utility pole Network Subjected to hurricane hazard and climate change. Frontiers in Built Environment, 6, 73. https://doi.org/10.3389/fbuil.2020.00073
  • Salomón, R. L., Peters, R. L., Zweifel, R., Sass-Klaassen, U. G. W., Stegehuis, A. I., Smiljanic, M., Poyatos, R., Babst, F., Cienciala, E., Fonti, P., Lerink, B. J. W., Lindner, M., Martinez-Vilalta, J., Mencuccini, M., Nabuurs, G.-J., van der Maaten, E., von Arx, G., Bär, A., Akhmetzyanov, L. Steppe, K. (2022). The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests. Nature Communications, 13(1), 28. https://doi.org/10.1038/s41467-021-27579-9
  • Schönauer, M., Prinz, R., Väätäinen, K., Astrup, R., Pszenny, D., Lindeman, H., & Jaeger, D. (2022). Spatio-temporal prediction of soil moisture using soil maps, topographic indices and SMAP retrievals. International Journal of Applied Earth Observation and Geoinformation, 108, 102730. https://doi.org/10.1016/j.jag.2022.102730
  • Sharapov, E., Brischke, C., & Militz, H. (2019). Assessment of preservative-treated wooden poles using drilling-resistance measurements. Forests, 11(1), 20. https://doi.org/10.3390/f11010020
  • Stirling, R., Alfredsen, G., Brischke, C., De Windt, I., Francis, L. P., Frühwald Hansson, E., Humar, M., Jermer, J., Klamer, M., Laks, P. E., Le Bayon, I., Metsä-Kortelainen, S., Meyer-Veltrup, L., Morris, P. I., Norton, J., Singh, T., Van Acker, J., Van den Bulcke, J., Venås, T. M., and Wong, A. H. H. (2016). Global survey on durability variation – on the effect of the reference species. Proceedings IRG Annual Meeting, Lisbon, Portugal, IRG/WP 16-20573 (pp. 26).
  • Thelandersson, S., Isaksson, T., Frühwald Hansson, E., Toratti, T., Viitanen, H., Grüll, G., Jermer, J., & Suttie, E. (2011). Service life of wood in outdoor above ground applications Engineering design guideline (TVBK 3060. Lund University. http://www.kstr.lth.se/fileadmin/kstr/pdf_files/Guideline/TVBK-3060JJversion.pdf
  • van de Kuilen, J.-W. G. (2007). Service life modelling of timber structures. Materials and Structures, 40(1), 151–161. https://doi.org/10.1617/s11527-006-9158-0
  • van de Kuilen, J. W., Beketova-Hummel, O., Pagella, G., Ravenshorst, G., & Gard, W. (2021). An integral approach for the assessment of timber pile foundations. World Conference on Timber Engineering, 9–12 August, Santiago, Chile.
  • van de Kuilen, J.-W. G., & Gard, W. (2013). Damage assessment and Residual service life estimation of Cracked timber Beams. Advanced Materials Research, 778, 402–409. https://doi.org/10.4028/www.scientific.net/AMR.778.402
  • van Niekerk, P. B., Marais, B. N., Brischke, C., Borges, L. M. S., Kutnik, M., Niklewski, J., Ansard, D., Humar, M., Cragg, S. M., & Militz, H. (2022b). Mapping the biotic degradation hazard of wood in Europe – biophysical background, engineering applications, and climate change-induced prospects. Holzforschung, 76(2), 188–210. https://doi.org/10.1515/hf-2021-0169
  • van Niekerk, P. B., Niklewski, J., Hosseini, S. H., Marais, B. N., Frimannslund, I., Thiis, T. K., & Brischke, C. (2023). Simulations of microclimates for wood-decaying fungi in the built environment using environmental analysis. Proceedings IRG Annual Meeting (ISSN 2000-8953), Cairns, Australia, IRG/WP 23–20703.
  • van Niekerk, P. B., Schönauer, M., Marais, B. N., & Brischke, C. (2022). Using satellite-retrieved soil moisture data to model the decay risk of in-ground timber IRG/WP 22-20689. 5.
  • Venugopal, P., Junninen, K., Linnakoski, R., Edman, M., & Kouki, J. (2016). Climate and wood quality have decayer-specific effects on fungal wood decomposition. Forest Ecology and Management, 360, 341–351. https://doi.org/10.1016/j.foreco.2015.10.023
  • Viitanen, H. A. (1997). Modelling the time Factor in the Development of brown rot decay in pine and spruce sapwood—the effect of critical humidity and temperature conditions. Holzforschung, 51(2), 99–106. https://doi.org/10.1515/hfsg.1997.51.2.99
  • Viitanen, H., Toratti, T., Makkonen, L., Peuhkuri, R., Ojanen, T., Ruokolainen, L., & Räisänen, J. (2010). Towards modelling of decay risk of wooden materials. European Journal of Wood and Wood Products, 68(3), 303–313. https://doi.org/10.1007/s00107-010-0450-x
  • Wang, C., Leicester, R. H., & Nguyen, M. N. (2008). Manual 3—decay in ground contact ( Manual USP2007/040). Timber Service Life Design Guide). CSIRO.
  • Welte, T., & Refsnæs, S. (2010). Useful life extension of wood poles by better condition assessment. 13.
  • Wickham, H. (2016). ggplot2: Elegant graphics for data analysis (2nd ed.). Springer-Verlag New York. https://doi.org/10.1007/978-3-319-24277-4
  • Wickham, H., François, R., Henry, L., & Müller, K. (2022). Dplyr: A grammar of data manipulation [computer software]. https://dplyr.tidyverse.org