589
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Tree species classification on images from airborne mobile mapping using ML.NET

ORCID Icon, &
Article: 2271651 | Received 30 Mar 2023, Accepted 11 Oct 2023, Published online: 07 Nov 2023

References

  • Ahmed, Z., Amizadeh, S., Bilenko, M., Carr, R., Chin, W. S., Dekel, Y., Dupre, X., Eksarevsliy, V., Filipi, S., Finley, T., Goswami, A., Hoover, M., Inglis, S., Interlandi, M., Kazmi, N., Krivosheev, G., Luferenko, P., Matantsev, I., Matusevych, S.,… Zhu, Y. (2019, July). Machine learning at Microsoft with ML. NET. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 2448–15).
  • Al-Haija, Q. A., & Adebanjo, A. (2020). Breast cancer diagnosis in histopathological images using ResNet-50 convolutional neural network. 2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS) (pp. 1–7). IEEE.
  • Avtar, R., Malik, R., Musthafa, M., Rathore, V. S., Kumar, P., & Singh, G. (2023). Forest plantation species classification using Full-Pol-Time-Averaged SAR scattering powers. Remote Sensing Applications: Society & Environment, 29, 100924. https://doi.org/10.1016/j.rsase.2023.100924
  • Barshooi, A. H., & Amirkhani, A. (2022). A novel data augmentation based on Gabor filter and convolutional deep learning for improving the classification of COVID-19 chest X-Ray images. Biomedical Signal Processing and Control, 72, 103326. https://doi.org/10.1016/j.bspc.2021.103326
  • Bont, L., Hill, A., Waser, L., Bürgi, A., Ginzler, C., & Blattert, C. (2020). Airborne-laser-scanning-derived auxiliary information discriminating between broadleaf and conifer trees improves the accuracy of models for predicting timber volume in mixed and heterogeneously structured forests. Forest Ecology and Management, 459, 117856. https://doi.org/10.1016/j.foreco.2019.117856
  • Brovkina, O., Cienciala, E., Surový, P., & Janata, P. (2018). Unmanned Aerial Vehicles (UAV) for assessment of qualitative classification of Norway spruce in temperate forest stands. Geo-Spatial Information Science, 21(1), 12–20. https://doi.org/10.1080/10095020.2017.1416994
  • Cao, K., & Zhang, X. (2020). An improved res-unet model for tree species classification using airborne high-resolution images. Remote Sensing, 12(7), 1128. https://doi.org/10.3390/rs12071128
  • Chamberlain, C. P., Meador, A. J. S., & Thode, A. E. (2020). Airborne lidar provides reliable estimates of canopy base height and canopy bulk density in southwestern ponderosa pine forests. Forest Ecology and Management, 481, 118695. https://doi.org/10.1016/j.foreco.2020.118695
  • Ciregan, D., Meier, U., & Schmidhuber, J. (2012). Multi-column deep neural networks for image classification. 2012 IEEE Conference on Computer Vision and Pattern Recognition (pp. 3642–3649). IEEE.
  • Crisci, C., Ghattas, B., & Perera, G. (2012). A review of supervised machine learning algorithms and their applications to ecological data. Ecological Modelling, 240, 113–122. https://doi.org/10.1016/j.ecolmodel.2012.03.001
  • Dalponte, M., Bruzzone, L., & Gianelle, D. (2012). Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data. Remote Sensing of Environment, 123, 258–270. https://doi.org/10.1016/j.rse.2012.03.013
  • Darwish, A., Leukert, K., & Reinhardt, W. (2003). Image segmentation for the purpose of object-based classification. IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No. 03CH37477) (Vol. 3, pp. 2039–2041). Ieee.
  • de Vries, T. N., Bronkhorst, J., Vermeer, M., Donker, J. C., Briels, S. A., Ziar, H., Zeman, M., & Isabella, O. (2020). A quick-scan method to assess photovoltaic rooftop potential based on aerial imagery and LiDAR. Solar Energy, 209, 96–107. https://doi.org/10.1016/j.solener.2020.07.035
  • Egli, S., & Höpke, M. (2020). CNN-Based tree species classification using high resolution RGB image data from automated UAV observations. Remote Sensing, 12(23), 3892. https://doi.org/10.3390/rs12233892.
  • El-Sheimy, N. (1996). The development of VISAT: A mobile survey system for GIS applications. University of Calgary.
  • Etienne, A., Ahmad, A., Aggarwal, V., & Saraswat, D. (2021). Deep learning-based object detection system for identifying weeds using UAS imagery. Remote Sensing, 13(24), 5182. https://doi.org/10.3390/rs13245182
  • Firat, H., & Hanbay, D. (2021). Classification of hyperspectral images using 3D CNN based ResNet50. 2021 29th Signal Processing and Communications Applications Conference (SIU) (pp. 1–4). IEEE.
  • Franklin, S. E. (2018). Pixel-and object-based multispectral classification of forest tree species from small unmanned aerial vehicles. Journal of Unmanned Vehicle Systems, 6(4), 195–211. https://doi.org/10.1139/juvs-2017-0022
  • Franklin, S. E., & Ahmed, O. S. (2018). Deciduous tree species classification using object-based analysis and machine learning with unmanned aerial vehicle multispectral data. International Journal of Remote Sensing, 39(15–16), 5236–5245. https://doi.org/10.1080/01431161.2017.1363442
  • Franklin, S. E., Ahmed, O. S., & Williams, G. (2017). Northern conifer forest species classification using multispectral data acquired from an unmanned aerial vehicle. PE&Rs, Photogrammetric Engineering & Remote Sensing, 83(7), 501–507. https://doi.org/10.14358/PERS.83.7.501
  • Fukuda, M., Ariji, Y., Kise, Y., Nozawa, M., Kuwada, C., Funakoshi, T., Muramatsu, C., Fujita, H., Katsumata, A., & Ariji, E. (2020). Comparison of 3 deep learning neural networks for classifying the relationship between the mandibular third molar and the mandibular canal on panoramic radiographs. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 130(3), 336–343. https://doi.org/10.1016/j.oooo.2020.04.005
  • Gamdha, D., Unnikrishnakurup, S., Rose, K. J., Surekha, M., Purushothaman, P., Ghose, B., & Balasubramaniam, K. (2021). Automated defect recognition on X-ray radiographs of solid propellant using deep learning based on convolutional neural networks. Journal of Nondestructive Evaluation, 40(1), 1–13. https://doi.org/10.1007/s10921-021-00750-4
  • Gini, R., Passoni, D., Pinto, L., & Sona, G. (2012). Aerial images from an UAV system: 3D modeling and tree species classification in a park area. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 39(B1), 361–366. https://doi.org/10.5194/isprsarchives-XXXIX-B1-361-2012
  • Goldblatt, R., Stuhlmacher, M. F., Tellman, B., Clinton, N., Hanson, G., Georgescu, M., Wang, C., Serrano-Candela, F., Khandelwal, A., Cheng, W., & Balling, R. C., Jr. (2018). Using Landsat and nighttime lights for supervised pixel-based image classification of urban land cover. Remote Sensing of Environment, 205, 253–275. https://doi.org/10.1016/j.rse.2017.11.026
  • Guo, X., Li, H., Jing, L., & Wang, P. (2022). Individual tree species classification based on convolutional neural networks and multitemporal high-resolution remote sensing images. Sensors, 22(9), 3157. https://doi.org/10.3390/s22093157
  • Habibzadeh, M., Jannesari, M., Rezaei, Z., Baharvand, H., & Totonchi, M. (2018). Automatic white blood cell classification using pre-trained deep learning models: Resnet and inception. Tenth International Conference on Machine Vision (ICMV 2017) (Vol. 10696, pp. 274–281). SPIE.
  • Haq, M. A., Rahaman, G., Baral, P., & Ghosh, A. (2021). Deep learning based supervised image classification using UAV images for forest areas classification. J Indian Soc Remote Sens, 49(3), 601–606. https://doi.org/10.1007/s12524-020-01231-3
  • Heinzel, J., & Koch, B. (2011). Exploring full-waveform LiDAR parameters for tree species classification. International Journal of Applied Earth Observation and Geoinformation: ITC Journal, 13(1), 152–160. https://doi.org/10.1016/j.jag.2010.09.010
  • Heinzel, J., & Koch, B. (2012). Investigating multiple data sources for tree species classification in temperate forest and use for single tree delineation. International Journal of Applied Earth Observation and Geoinformation, 18, 101–110. https://doi.org/10.1016/j.jag.2012.01.025
  • He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770–778).
  • He, T., Zhou, H., Xu, C., Hu, J., Xue, X., Xu, L., Lou, X., Zeng, K., & Wang, Q. (2023). Deep learning in forest tree species classification using sentinel-2 on google Earth engine: A case study of Qingyuan County. Sustainability, 15(3), 2741. https://doi.org/10.3390/su15032741
  • Huang, J., Zhang, X., Xin, Q., Sun, Y., & Zhang, P. (2019). Automatic building extraction from high-resolution aerial images and LiDAR data using gated residual refinement network. ISPRS Journal of Photogrammetry and Remote Sensing, 151, 91–105. https://doi.org/10.1016/j.isprsjprs.2019.02.019
  • Hung, J., & Carpenter, A. (2017). Applying faster R-CNN for object detection on malaria images. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp. 56–61).
  • Immitzer, M., Atzberger, C., & Koukal, T. (2012). Tree species classification with random forest using very high spatial resolution 8-band WorldView-2 satellite data. Remote Sensing, 4(9), 2661–2693. https://doi.org/10.3390/rs4092661
  • Kattenborn, T., Eichel, J., & Fassnacht, F. E. (2019). Convolutional neural networks enable efficient, accurate and fine-grained segmentation of plant species and communities from high-resolution UAV imagery. Scientific Reports, 9(1), 17656. https://doi.org/10.1038/s41598-019-53797-9
  • Kattenborn, T., Leitloff, J., Schiefer, F., & Hinz, S. (2021). Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. Isprs Journal of Photogrammetry & Remote Sensing, 173, 24–49. https://doi.org/10.1016/j.isprsjprs.2020.12.010
  • Ke, Y., Quackenbush, L. J., & Im, J. (2010). Synergistic use of QuickBird multispectral imagery and LIDAR data for object-based forest species classification. Remote Sensing of Environment, 114(6), 1141–1154. https://doi.org/10.1016/j.rse.2010.01.002
  • Khosravian, A., Amirkhani, A., Kashiani, H., & Masih-Tehrani, M. (2021). Generalizing state-of-the-art object detectors for autonomous vehicles in unseen environments. Expert Systems with Applications, 183, 115417. https://doi.org/10.1016/j.eswa.2021.115417
  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84–90. https://doi.org/10.1145/3065386
  • Krüger Geb Amiri, N., Heurich, M., Krzystek, P., & Skidmore, A. (2018). Feature relevance assessment of multispectral airborne LiDAR data for tree species classification. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-3, 31–34. https://doi.org/10.5194/isprs-archives-XLII-3-31-2018
  • Kukkonen, M., Maltamo, M., Korhonen, L., & Packalen, P. (2019). Multispectral airborne LiDAR data in the prediction of boreal tree species composition. IEEE Transactions on Geoscience and Remote Sensing: A Publication of the IEEE Geoscience and Remote Sensing Society, 57(6), 3462–3471. https://doi.org/10.1109/TGRS.2018.2885057
  • Kuwada, C., Ariji, Y., Fukuda, M., Kise, Y., Fujita, H., Katsumata, A., & Ariji, E. (2020). Deep learning systems for detecting and classifying the presence of impacted supernumerary teeth in the maxillary incisor region on panoramic radiographs. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 130(4), 464–469. https://doi.org/10.1016/j.oooo.2020.04.813
  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
  • Li, H., Hu, B., Li, Q., & Jing, L. (2021). CNN-Based individual tree species classification using high-resolution satellite imagery and airborne LiDAR data. Forests, 12(12), 1697. https://doi.org/10.3390/f12121697
  • Li, B., & Lima, D. (2021). Facial expression recognition via ResNet-50. International Journal of Cognitive Computing in Engineering, 2, 57–64. https://doi.org/10.1016/j.ijcce.2021.02.002
  • Li, Y., Tang, B., Li, J., Sun, W., Lin, Z., & Luo, Q. (2021). Research on common tree species recognition by faster R-CNN based on whole tree image. In 2021 IEEE 6th International Conference on Signal and Image Processing (ICSIP) (pp. 28–32). IEEE.
  • Liu, D., & Xia, F. (2010). Assessing object-based classification: Advantages and limitations. Remote Sensing Letters, 1(4), 187–194. https://doi.org/10.1080/01431161003743173
  • Liu, Q., Xiao, L., Yang, J., & Wei, Z. (2020). CNN-enhanced graph convolutional network with pixel-and superpixel-level feature fusion for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 59(10), 8657–8671. https://doi.org/10.1109/TGRS.2020.3037361
  • Magnard, C., Morsdorf, F., Small, D., Stilla, U., Schaepman, M. E., & Meier, E. (2016). Single tree identification using airborne multibaseline SAR interferometry data. Remote Sensing of Environment, 186, 567–580. https://doi.org/10.1016/j.rse.2016.09.018
  • Mahdi, F. P., Motoki, K., & Kobashi, S. (2020). Optimization technique combined with deep learning method for teeth recognition in dental panoramic radiographs. Scientific Reports, 10(1), 19261. https://doi.org/10.1038/s41598-020-75887-9
  • Mahdy, L. N., Ezzat, K. A., Elmousalami, H. H., Ella, H. A., & Hassanien, A. E. (2020). Automatic x-ray COVID-19 lung image classification system based on multi-level thresholding and support vector machine. MedRxiv, 2020.03. https://doi.org/10.1101/2020.03.30.20047787
  • Mallick, P. K., Ryu, S. H., Satapathy, S. K., Mishra, S., Nguyen, G. N., & Tiwari, P. (2019). Brain MRI image classification for cancer detection using deep wavelet autoencoder-based deep neural network. IEEE Access, 7, 46278–46287. https://doi.org/10.1109/ACCESS.2019.2902252
  • Michałowska, M. (2020). Verification of building constructions surroundings based on airborne laser scanning data. XV International Conference on Durability of Building Materials and Components (DBMC 2020).
  • Michałowska, M., & Rapiński, J. (2021). A review of tree species classification based on airborne LiDAR data and applied classifiers. Remote Sensing, 13(3), 353. https://doi.org/10.3390/rs13030353
  • Mikołajczyk, A., & Grochowski, M. (2018). Data augmentation for improving deep learning in image classification problem. 2018 international interdisciplinary PhD workshop (IIPhDW) (pp. 117–122). IEEE.
  • MS, M., SS, S. R., & S S, S. R. (2022). Optimal squeeze net with deep neural network-based aerial image classification model in unmanned aerial vehicles. Traitement du Signal, 39(1), 275–281. https://doi.org/10.18280/ts.390128
  • Murata, M., Ariji, Y., Ohashi, Y., Kawai, T., Fukuda, M., Funakoshi, T., Kise, Y., Nozawa, M., Katsumata, A., Fujita, H., & Ariji, E. (2019). Deep-learning classification using convolutional neural network for evaluation of maxillary sinusitis on panoramic radiography. Oral Radiology, 35(3), 301–307. https://doi.org/10.1007/s11282-018-0363-7
  • Natesan, S., Armenakis, C., & Vepakomma, U. (2019). Resnet-based tree species classification using uav images. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, XLII-2/W13, 475–481. https://doi.org/10.5194/isprs-archives-XLII-2-W13-475-2019
  • Natesan, S., Armenakis, C., & Vepakomma, U. (2020). Individual tree species identification using dense convolutional network (DenseNet) on multitemporal RGB images from UAV. Journal of Unmanned Vehicle Systems, 8(4), 310–333. https://doi.org/10.1139/juvs-2020-0014
  • Nevalainen, O., Honkavaara, E., Tuominen, S., Viljanen, N., Hakala, T., Yu, X., Hyyppä, J., Saari, H., Pölönen, I., Imai, N. N., & Tommaselli, A. M. (2017). Individual tree detection and classification with UAV-based photogrammetric point clouds and hyperspectral imaging. Remote Sensing, 9(3), 185. https://doi.org/10.3390/rs9030185
  • Nogueira, K., dos Santos, J. A., Menini, N., Silva, T. S., Morellato, L. P. C., & Torres, R. D. S. (2019). Spatio-temporal vegetation pixel classification by using convolutional networks. IEEE Geoscience and Remote Sensing Letters, 16(10), 1665–1669. https://doi.org/10.1109/LGRS.2019.2903194
  • Onishi, M., & Ise, T. (2018). Automatic classification of trees using a UAV onboard camera and deep learning. arXiv preprint arXiv:1804.10390.
  • Onishi, M., & Ise, T. (2021). Explainable identification and mapping of trees using UAV RGB image and deep learning. Scientific Reports, 11(1), 903. https://doi.org/10.1038/s41598-020-79653-9
  • Ørka, H. O., Næsset, E., & Bollandsås, O. M. (2010). Effects of different sensors and leaf-on and leaf-off canopy conditions on echo distributions and individual tree properties derived from airborne laser scanning. Remote Sensing of Environment, 114(7), 1445–1461. https://doi.org/10.1016/j.rse.2010.01.024
  • Perez, L., & Wang, J. (2017). The effectiveness of data augmentation in image classification using deep learning. arXiv preprint arXiv:1712.04621.
  • Pyysalo, U., & Hyyppa, H. (2002). Reconstructing tree crowns from laser scanner data for feature extraction. International Archives Of Photogrammetry Remote Sensing And Spatial Information Sciences, 34(3/B), 218–221. https://scholar.google.com/scholar_lookup?title=Reconstructing+tree+crowns+from+laser+scanner+data+for+feature+extraction&author=Pyysalo,+U.&author=Hyyppa,+H.&publication_year=2002&journal=Int.+Arch.+Photogramm.+Remote+Sens.+Spat.+Inf.+Sci.&volume=34&pages=218%E2%80%93221.
  • Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779–788).
  • Roberts, R., Giancontieri, G., Inzerillo, L., & DiMino, G. (2020). Towards low-cost pavement condition health monitoring and analysis using deep learning. Applied Sciences, 10(1), 319. https://doi.org/10.3390/app10010319
  • Safonova, A., Tabik, S., Alcaraz-Segura, D., Rubtsov, A., Maglinets, Y., & Herrera, F. (2019). Detection of fir trees (abies sibirica) damaged by the bark beetle in unmanned aerial vehicle images with deep learning. Remote Sensing, 11(6), 643. https://doi.org/10.3390/rs11060643
  • Sarrazin, D., van Aardt, J., Asner, G., Mcglinchy, J., Messinger, D., & Wu, J. (2011). Fusing small-footprint waveform LiDAR and hyperspectral data for canopy-level species classification and herbaceous biomass modeling in savanna ecosystems. Canadian Journal of Remote Sensing, 37(6), 653–665. https://doi.org/10.5589/m12-007
  • Sarwinda, D., Paradisa, R. H., Bustamam, A., & Anggia, P. (2021). Deep learning in image classification using residual network (ResNet) variants for detection of colorectal cancer. Procedia Computer Science, 179, 423–431. https://doi.org/10.1016/j.procs.2021.01.025
  • Schiefer, F., Kattenborn, T., Frick, A., Frey, J., Schall, P., Koch, B., & Schmidtlein, S. (2020). Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks. ISPRS Journal of Photogrammetry and Remote Sensing, 170, 205–215. https://doi.org/10.1016/j.isprsjprs.2020.10.015
  • Shen, X., & Cao, L. (2017). Tree-species classification in subtropical forests using airborne hyperspectral and LiDAR data. Remote Sensing, 9(11), 1180. https://doi.org/10.3390/rs9111180
  • Shotton, J., Sharp, T., Kipman, A., Fitzgibbon, A., Finocchio, M., Blake, A., Cook, M., & Moore, R. (2013). Real-time human pose recognition in parts from single depth images. Communications of the ACM, 56(1), 116–124. https://doi.org/10.1145/2398356.2398381
  • Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
  • Solberg, S., Næsset, E., & Bollandsas, O. M. (2006). Single tree segmentation using airborne laser scanner data in a structurally heterogeneous spruce forest. Photogrammetric Engineering & Remote Sensing, 72(12), 1369–1378. https://doi.org/10.14358/PERS.72.12.1369
  • Song, Y., He, F., & Zhang, X. (2019). To identify tree species with highly similar leaves based on a novel attention mechanism for CNN. IEEE Access, 7, 163277–163286. https://doi.org/10.1109/ACCESS.2019.2951607
  • Sothe, C., Dalponte, M., Almeida, C. M. D., Schimalski, M. B., Lima, C. L., Liesenberg, V., Miyoshi, G. T., & Tommaselli, A. M. G. (2019). Tree species classification in a highly diverse subtropical forest integrating UAV-based photogrammetric point cloud and hyperspectral data. Remote Sensing, 11(11), 1338. https://doi.org/10.3390/rs11111338
  • Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1–9).
  • Tsai, D. M., & Chen, W. L. (2017). Coffee plantation area recognition in satellite images using Fourier transform. Computers and Electronics in Agriculture, 135, 115–127. https://doi.org/10.1016/j.compag.2016.12.020
  • Tzutalin, L. (2015). Git code. https://github.com/tzutalin/labelImg
  • Udali, A., Lingua, E., & Persson, H. J. (2021). Assessing forest type and tree species classification using sentinel-1 C-Band SAR data in Southern Sweden. Remote Sensing, 13(16), 3237. https://doi.org/10.3390/rs13163237
  • Wäldchen, J., Mäder, P., & Cooper, N. (2018). Machine learning for image based species identification. Methods in Ecology and Evolution, 9(11), 2216–2225. https://doi.org/10.1111/2041-210X.13075
  • Wang, Q., Bi, S., Sun, M., Wang, Y., Wang, D., Yang, S., & Zhang, J. (2019). Deep learning approach to peripheral leukocyte recognition. PloS One, 14(6), e0218808. https://doi.org/10.1371/journal.pone.0218808
  • Wen, L., Li, X., & Gao, L. (2020). A transfer convolutional neural network for fault diagnosis based on ResNet-50. Neural Computing and Applications, 32(10), 6111–6124. https://doi.org/10.1007/s00521-019-04097-w
  • Wu, Q., Lane, C. R., Li, X., Zhao, K., Zhou, Y., Clinton, N., de Vries, B., Golden, H., & Lang, M. W. (2019). Integrating LiDAR data and multi-temporal aerial imagery to map wetland inundation dynamics using Google earth engine. Remote Sensing of Environment, 228, 1–13. https://doi.org/10.1016/j.rse.2019.04.015
  • Xuan, J., Li, X., Du, H., Zhou, G., Mao, F., Wang, J., Zhang, B., Gong, Y., Zhu, D., Zhou, L., Huanf, Z., Xu, C., Chen, J., Zhou, Y., Chen, C., Tan, C., & Sun, J. (2022). Intelligent estimating the tree height in urban forests based on deep learning combined with a smartphone and a comparison with UAV-LiDAR. Remote Sensing, 15(1), 97. https://doi.org/10.3390/rs15010097
  • Yan, S., Jing, L., & Wang, H. (2021). A new individual tree species recognition method based on a convolutional neural network and high-spatial resolution remote sensing imagery. Remote Sensing, 13(3), 479. https://doi.org/10.3390/rs13030479
  • Yao, W., Krzystek, P., & Heurich, M. (2012). Tree species classification and estimation of stem volume and DBH based on single tree extraction by exploiting airborne full-waveform LiDAR data. Remote Sensing of Environment, 123, 368–380. https://doi.org/10.1016/j.rse.2012.03.027
  • You, H. T., Lei, P., Li, M. S., & Ruan, F. Q. (2020). Forest species classification based on three-dimensional coordinate and intensity information of airborne LiDAR data with random forest method. The International Archives of Photogrammetry, Remote Sensing & Spatial Information Sciences, 42, 117–123. https://doi.org/10.5194/isprs-archives-XLII-3-W10-117-2020
  • Yu, X., Hyyppä, J., Litkey, P., Kaartinen, H., Vastaranta, M., & Holopainen, M. (2017). Single-sensor solution to tree species classification using multispectral airborne laser scanning. Remote Sensing, 9(2), 108. https://doi.org/10.3390/rs9020108
  • Yu, H., & Zahidi, I. (2023). Tailings pond classification based on satellite images and machine learning: An exploration of Microsoft ML. Net Mathematics, 11(3), 517. https://doi.org/10.3390/math11030517
  • Zhang, C., Xia, K., Feng, H., Yang, Y., & Du, X. (2021). Tree species classification using deep learning and RGB optical images obtained by an unmanned aerial vehicle. Journal of Forestry Research, 32(5), 1879–1888. https://doi.org/10.1007/s11676-020-01245-0
  • Zhou, Y., Liu, W., Bi, H., Chen, R., Zong, S., & Luo, Y. (2022). A detection method for individual infected pine trees with pine wilt disease based on deep learning. Forests, 13(11), 1880. https://doi.org/10.3390/f13111880