536
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Cloud climatology of northwestern Mexico based on MODIS data

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2278066 | Received 26 Jul 2023, Accepted 27 Oct 2023, Published online: 15 Nov 2023

References

  • Badan‐Dangon, A., Dorman, C. E., Merrifield, M. A., & Winant, C. D. (1991). The lower atmosphere over the Gulf of California. Journal of Geophysical Research: Oceans, 96(C9), 16877–19. https://doi.org/10.1029/91JC01433
  • Barlow, M., Nigam, S., & Berbery, E. H. (1998). Evolution of the north American monsoon system. Journal of Climate, 11(9), 2238–2257. https://doi.org/10.1175/1520-0442(1998)011<2238:EOTNAM>2.0.CO;2
  • Bedacht, E., Gulev, S. K., & Macke, A. (2007). Intercomparison of global cloud cover fields over oceans from the VOS observations and NCEP/NCAR reanalysis. International Journal of Climato Logy: A Journal of the Royal Meteorological Society, 27(13), 1707–1719. https://doi.org/10.1002/joc.1490
  • Berbery, E. H. (2001). Mesoscale moisture analysis of the north American monsoon. Journal of Climate, 14(2), 121–137. https://doi.org/10.1175/1520-0442(2001)013<0121:MMAOTN>2.0.CO;2
  • Bergman, J. W., & Salby, M. L. (1996). Diurnal variations of cloud cover and their relationship to climatological conditions. Journal of Climate, 9(11), 2802–2820. https://doi.org/10.1175/1520-0442(1996)009<2802:DVOCCA>2.0.CO;2
  • Bilgiç, H. H., & Mert, İ. (2021). Comparison of different techniques for estimation of incoming longwave radiation. International Journal of Environmental Science and Technology, 18(3), 601–618.https://doi.org/10.1007/s13762-020-02923-6
  • Brito‐Castillo, L., Farfán, L. M., & Antemate‐Velasco, G. J. (2022). Effect of the Trans‐Volcanic axis on meridional propagation of summer precipitation in western Mexico. International Journal of Climatology, 42(16), 9304–9318. https://doi.org/10.1002/joc.7819
  • Carbone, R. E., Tuttle, J. D., Ahijevych, D. A., & Trier, S. B. (2002). Inferences of predictability associated with warm-season precipitation episodes. Journal of the Atmospheric Sciences, 59(13), 2033–2056. https://doi.org/10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2
  • Castro, C. L., Pielke, R. A., Sr., & Adegoke, J. O. (2007). Investigation of the summer climate of the contiguous United States and Mexico using the regional atmospheric modeling system (RAMS). Part I: Model climatology (1950–2002). Journal of Climate, 20(15), 3844–3865. https://doi.org/10.1175/JCLI4211.1
  • Cavazos, T., Luna‐Niño, R., Cerezo‐Mota, R., Fuentes‐Franco, R., Méndez, M., Pineda Martínez, L. F., & Valenzuela, E. (2020). Climatic trends and regional climate models intercomparison over the CORDEX‐CAM (central America, Caribbean, and Mexico) domain. International Journal of Climatology, 40(3), 1396–1420. https://doi.org/10.1002/joc.6276
  • Cess, R. D., Nemesure, S., Dutton, E. G., Deluisi, J. J., Potter, G. L., & Morcrette, J. J. (1993). The impact of clouds on the shortwave radiation budget of the surface-atmosphere system: Interfacing measurements and models. Journal of Climate, 6(2), 308–316. https://doi.org/10.1175/1520-0442(1993)006<0308:TIOCOT>2.0.CO;2
  • Cohn, S. A. (2017). Nueva edición del Atlas Internacional de Nubes.
  • Comrie, A. C., & Glenn, E. C. (1998). Principal components-based regionalization of precipitation regimes across the southwest United States and northern Mexico, with an application to monsoon precipitation variability. Climate Research, 10(3), 201–215. https://doi.org/10.3354/cr010201
  • Copernicus Climate Change Service (C3S). (2017, march). ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS), Date of Access, 2021.https://cds.climate.copernicus.eu/cdsapp#!/home
  • Davis, S. M., Liang, C. K., & Rosenlof, K. H. (2013). Interannual variability of tropical tropopause layer clouds. Geophysical Research Letters, 40(11), 2862–2866. https://doi.org/10.1002/grl.50512
  • Doelling, D. R., Nguyen, L., & Minnis, P. (2004). On the use of deep convective clouds to calibrate AVHRR data, Proc. SPIE 5542, Earth Observing Systems IX, 26 October 2004. https://doi.org/10.1117/12.560047
  • Dominguez, F., & Kumar, P. (2005). Dominant modes of moisture flux anomalies over north America. Journal of Hydrometeorology - J HYDROMETEOROL, 6(2), 194–209. https://doi.org/10.1175/JHM417.1
  • Dommenget, D., & Yu, Y. (2016). The seasonally changing cloud feedback contributes to the ENSO seasonal phase-locking. Climate Dynamics, 47(12), 3661–3672. https://doi.org/10.1007/s00382-016-3034-6
  • Douglas, A. V., Cayan, D. R., & Namias, J. (1982). Large-scale changes in north Pacific and north American weather patterns in recent decades. Monthly Weather Review, 110(12), 1851–1862. https://doi.org/10.1175/1520-0493(1982)110<1851:LSCINP>2.0.CO;2
  • Farfán, L. M., Barrett, B. S., Raga, G. B., & Delgado, J. J. (2021). Characteristics of mesoscale convection over northwestern Mexico, the Gulf of California, and the Baja California peninsula. International Journal of Climatology, 41(S1), E1062–E1084. https://doi.org/10.1002/joc.6752
  • Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific Data, 2(1), 1–21. https://doi.org/10.1038/sdata.2015.66
  • Garatuza-Payan, J., Pinker, R. T., & Shuttleworth, W. J. (2001). High-resolution daytime cloud observations for northwestern Mexico from GOES-7 satellite observations. Journal of Atmospheric and Oceanic Technology, 18(1), 39–55(a). https://doi.org/10.1175/1520-0426(2001)018<0039:HRDCOF>2.0.CO;2
  • Garatuza-Payan, J., Pinker, R. T., Shuttleworth, W. J., & Watts, C. J. (2001). Solar radiation and evapotranspiration in northern Mexico are estimated from remotely sensed measurements of cloudiness. Hydrological Sciences Journal, 46(3), 465–478(b). https://doi.org/10.1080/02626660109492839
  • Gebremichael, M., Vivoni, E. R., Watts, C. J., & Rodríguez, J. C. (2007). Submesoscale spatiotemporal variability of north American monsoon rainfall over complex terrain. Journal of Climate, 20(9), 1751–1773. https://doi.org/10.1175/JCLI4093.1
  • Giovannettone, J. P., & Barros, A. P. (2008). A remote sensing survey of the role of landform on the organization of orographic precipitation in central and southern Mexico. Journal of Hydrometeorology, 9(6), 1267–1283. https://doi.org/10.1175/2008JHM947.1
  • Giovannettone, J. P., & Barros, A. P. (2009). Probing regional orographic controls of precipitation and cloudiness in the central Andes using satellite data. Journal of Hydrometeorology, 10(1), 167–182. https://doi.org/10.1175/2008JHM973.1
  • Gutzler, D. S. (2004). An index of interannual precipitation variability in the core of the north American monsoon region. Journal of Climate, 17(22), 4473–4480. https://doi.org/10.1175/3226.1
  • Hazards Center, C. (2015). CHIRPS: Rainfall estimates from rain gauge and satellite observations. ( Google Scholar). Climate Hazards Center.
  • Henken, C. C., Schmeits, M. J., Deneke, H., & Roebeling, R. A. (2011). Using MSG-SEVIRI cloud physical properties and weather radar observations for the detection of Cb/TCu clouds. Journal of Applied Meteorology and Climatology, 50(7), 1587–1600. https://doi.org/10.1175/2011JAMC2601.1
  • Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., and Thépaut, J.-N. (2017). Complete ERA5 from 1940: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus climate Change Service (C3S) data store (CDS). https://doi.org/10.24381/cds.143582cf
  • Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., & Thépaut, J. N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803
  • Higgins, R. W., Yao, Y., & Wang, X. L. (1997). Influence of the north American monsoon system on the US summer precipitation regime. Journal of Climate, 10(10), 2600–2622. https://doi.org/10.1175/1520-0442(1997)010<2600:IOTNAM>2.0.CO;2
  • Hong, G., Heygster, G., & Rodriguez, C. A. M. (2006). Effect of cirrus clouds on the diurnal cycle of tropical deep convective clouds. Journal of Geophysical Research: Atmospheres, 111(D6). https://doi.org/10.1029/2005JD006208
  • Houze, R. A. (2014). Cloud dynamics. Academic press.
  • Katsanos, D., Retalis, A., Tymvios, F., & Michaelides, S. (2016). Analysis of precipitation extremes based on satellite (CHIRPS) and in situ dataset over Cyprus. Natural Hazards, 83(1), 53–63. https://doi.org/10.1007/s11069-016-2335-8
  • León-Cruz, J. F., Henken, C., Carbajal, N., & Fischer, J. (2021). Spatio-temporal distribution of deep convection observed along the Trans-Mexican Volcanic belt. Remote Sensing, 13(6), 1215. https://doi.org/10.3390/rs13061215
  • Letu, H., Shi, J., Li, M., Wang, T., Shang, H., Lei, Y., & Chen, L. (2020). A review of downward surface shortwave radiation estimation based on satellite data: Methods, progress, and problems. Science China Earth Sciences, 63(6), 774–789. https://doi.org/10.1007/s11430-019-9589-0
  • Martínez‐Díaz‐de‐León, A., Pacheco‐Ruíz, I., Delgadillo‐Hinojosa, F., Zertuche‐González, J. A., Chee‐Barragán, A., Blanco‐Betancourt, R., Guzmán‐Calderón, J. M., & Gálvez‐Telles, A. (2006). Spatial and temporal variability of the sea surface temperature in the ballenas‐salsipuedes channel (central Gulf of California). Journal of Geophysical Research: Oceans, 111(C2). https://doi.org/10.1029/2005JC002940
  • Meerkötter, R., & Zinner, T. (2007). Satellite remote sensing of cloud base height for convective cloud fields: A case study. Geophysical Research Letters, 34(17). https://doi.org/10.1029/2007GL030347
  • Mendez-Barroso, L. A. (2009). Changes in Hydrological Conditions and Surface Fluxes Due to Seasonal Vegetation Greening in the North American Monsoon Region (Doctoral dissertation, New Mexico Institute of Mining and Technology).
  • Menzel, W. P., Frey, R. A., & Baum, B. A. (2015). Terra and Aqua/MODIS cloud product 5-min L2 swath 1 km and 5 km, C6, NASA level-1 and atmosphere archive & distribution System (LAADS) distributed active archive center (DAAC). Goddard Space Flight Center. 10.5067/MODIS/MOD06_L2.006
  • Meskhidze, N., Remer, L. A., Platnick, S., Negrón Juárez, R., Lichtenberger, A. M., & Aiyyer, A. R. (2009). Exploring the differences in cloud properties observed by the terra and aqua MODIS sensors. Atmospheric Chemistry and Physics, 9(10), 3461–3475. https://doi.org/10.5194/acp-9-3461-2009
  • Morales-Acuña, E., Torres, C. R., Delgadillo-Hinojosa, F., Linero-Cueto, J. R., Santamaría-Del-Ángel, E., & Castro, R. (2019). The Baja California peninsula, is a significant source of dust in northwest Mexico. Atmosphere, 10(10), 582. https://doi.org/10.3390/atmos10100582
  • Morel, C., & Senesi, S. (2002a). A climatology of mesoscale convective systems over Europe using satellite infrared imagery. I: Methodology. Quarterly Journal of the Royal Meteorological Society: A Journal of the Atmospheric Sciences, Applied Meteorology and Physical Oceanography, 128(584), 1953–1971(a). https://doi.org/10.1256/003590002320603485
  • Morel, C., & Senesi, S. (2002b). A climatology of mesoscale convective systems over Europe using satellite infrared imagery. II: Characteristics of European mesoscale convective systems. Quarterly Journal of the Royal Meteorological Society: A Journal of the Atmospheric Sciences, Applied Meteorology and Physical Oceanography, 128(584), 1973–1995. b https://doi.org/10.1256/003590002320603494
  • Pfeifroth, U., Hollmann, R., & Ahrens, B. (2012). Cloud cover diurnal cycles in satellite data and regional climate model simulations. Meteorologische Zeitschrift, 21(6), 551–560. https://doi.org/10.1127/0941-2948/2012/0423
  • Pineda-Martinez, L. F., León-Cruz, J. F., & Carbajal, N. (2020). Análisis de tormentas severas y formación de tornados en la región norte de México. Revista Bio Ciencias, 7, e885. https://doi.org/10.15741/revbio.07.e885
  • Platnick, S., King, M. D., Meyer, K. G., Wind, G., Amarasinghe, N., Marchant, B., & Riedi, J. (2015). MODIS cloud optical properties: User guide for the collection 6 level-2 MOD06/MYD06 product and associated level-3 datasets. Version, 1, 145. https://doi.org/10.5067/MODIS/MOD06_L2.006
  • Platnick, S., Meyer, K. G., King, M. D., Wind, G., Amarasinghe, N., Marchant, B., & Riedi, J. (2016). The MODIS cloud optical and microphysical products: Collection 6 updates and examples from Terra and Aqua. IEEE Transactions on Geoscience and Remote Sensing, 55(1), 502–525. https://doi.org/10.1109/TGRS.2016.2610522
  • Quante, M. (2004). The role of clouds in the climate system. In Journal de Physique IV (Proceedings), France (Vol. 121, pp. 61–86). EDP sciences. https://doi.org/10.1051/jp4:2004121003
  • Rossow, W. B., & Schiffer, R. A. (1999). Advances in understanding clouds from ISCCP. Bulletin of the American Meteorological Society, 80(11), 2261–2288. https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2
  • Soto-Mardones, L., Marinone, S. G., & Parés-Sierra, A. (1999). Time and spatial variability of sea surface temperature in the Gulf of California. Ciencias Marinas, 25(1), 1–30. https://doi.org/10.7773/cm.v25i1.658
  • Valdés-Manzanilla, A. (2015). Mesoscale convective systems in NW Mexico during the strong ENSO events of 1997-1999. Atmósfera, 28(2), 143–148. https://doi.org/10.20937/ATM.2015.28.02.06
  • Vera, C., Higgins, W., Amador, J., Ambrizzi, T., Garreaud, R., Gochis, D., Gutzler, D., Lettenmaier, D., Marengo, J., Mechoso, C. R., Nogues-Paegle, J., Dias, P. L. S., & Zhang, C. (2006). Toward a unified view of the American monsoon systems. Journal of Climate, 19(20), 4977–5000. https://doi.org/10.1175/JCLI3896.1
  • Warren, S. G., Hahn, C. J., London, J., Chervin, R. M., & Jenne, R. L. (1988). Global distribution of total cloud cover and cloud type amounts over the ocean (no. DOE/ER-0406; NCAR/TN-317-STR). In USDOE office of energy research, Washington, DC (USA) (pp. 170). Carbon Dioxide Research Div.; National Center for Atmospheric Research.
  • Yuan, T., Martins, J. V., Li, Z., & Remer, L. A. (2010). Estimating glaciation temperature of deep convective clouds with remote sensing data. Geophysical Research Letters, 37(8). https://doi.org/10.1029/2010GL042753
  • Zuidema, P., Fairall, C., Hartten, L. M., Hare, J. E., & Wolfe, D. (2007). On air-sea interaction at the mouth of the Gulf of California. Journal of Climate, 20(9), 1649–1661. https://doi.org/10.1175/JCLI4089.1