471
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Predictions of Spartina alterniflora leaf functional traits based on hyperspectral data and machine learning models

, , , , , , , , & show all
Article: 2294951 | Received 26 Jul 2023, Accepted 09 Dec 2023, Published online: 22 Dec 2023

References

  • Ai, J., Chen, W., Chen, L., Zhang, Y., Zhou, Y., Guo, X., & Chu, W. (2015). Hyperspectral remote sensing estimation models for foliar photosynthetic pigment contents at canopy level in an invasive species, Spartina alterniflora. Acta Ecologica Sinica, 35(4), 1175–15. https://doi.org/10.5846/stxb201304270834
  • An, S. Q., Gu, B. H., Zhou, C. F., Wang, Z. S., Deng, Z. F., Zhi, Y. B., Li, H. L., Chen, L., Yu, D. H., & Liu, Y. H. (2007). Spartina invasion in China: implications for invasive species management and future research. Weed Research, 47, 183–191. https://doi.org/10.1111/j.1365-3180.2007.00559.x
  • Asner, G. P., Knapp, D. E., Anderson, C. B., Martin, R. E., & Vaughn, N. (2016). Large-scale climatic and geophysical controls on the leaf economics spectrum. Proceedings of the National Academy of Sciences, 113(28), E4043–E4051. https://doi.org/10.1073/pnas.1604863113
  • Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., & Silliman, B. R. (2011). The value of estuarine and coastal ecosystem services. Ecological Monographs, 81(2), 169–193. https://doi.org/10.1890/10-1510.1
  • Beltrami, M., & da Silva, A. C. L. (2020). A grid-quadtree model selection method for support vector machines. Expert Systems with Applications, 146, 113172. https://doi.org/10.1016/j.eswa.2019.113172
  • Blankespoor, B., Dasgupta, S., & Laplante, B. (2014). Sea-level rise and coastal wetlands. Ambio, 43(8), 996–1005. https://doi.org/10.1007/s13280-014-0500-4
  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
  • Cai, F., Su, X., Liu, J., Li, B., & Lei, G. (2009). Coastal erosion in China under the condition of global climate change and measures for its prevention. Progress in Natural Science, 19(4), 415–426. https://doi.org/10.1016/j.pnsc.2008.05.034
  • Carlucci, M. B., Debastiani, V. J., Pillar, V. D., & Duarte, L. D. (2015). Between‐and within‐species trait variability and the assembly of sapling communities in forest patches. Journal of Vegetation Science, 26(1), 21–31. https://doi.org/10.1111/jvs.12223
  • Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, 785–794. https://doi.org/10.1145/2939672.2939785
  • Chen, C., Ma, Y., Ren, G., & Wang, J. (2022). Aboveground biomass of salt-marsh vegetation in coastal wetlands: Sample expansion of in situ hyperspectral and sentinel-2 data using a generative adversarial network. Remote Sensing of Environment, 270, 112885. https://doi.org/10.1016/j.rse.2021.112885
  • Chen, X. P., Sun, J., Wang, Y., Zhang, H. Y., He, C. Q., Liu, X. Y., Bu, N. S., & Long, X. E. (2018). Temporal and spatial impact of Spartina alterniflora invasion on methanogens community in Chongming Island, China. Journal of Microbiology, 56(7), 507–515. https://doi.org/10.1007/s12275-018-8062-y
  • Chen, Y., Wang, J., Liu, G., Yang, Y., Liu, Z., & Deng, H. (2019). Hyperspectral estimation model of forest soil organic matter in northwest Yunnan Province, China. Forests, 10(3), 217. https://doi.org/10.3390/f10030217
  • Cui, L., Dou, Z., Liu, Z., Zuo, X., Lei, Y., Li, J., Zhao, X., Zhai, X., Pan, X., & Li, W. (2020). Hyperspectral inversion of Phragmites communis carbon, nitrogen, and phosphorus stoichiometry using three models. Remote Sensing, 12(12), 1998. https://doi.org/10.3390/rs12121998
  • Cui, L., Zuo, X., Dou, Z., Huang, Y., Zhao, X., Zhai, X., Lei, Y., Li, J., Pan, X., & Li, W. (2021). Plant identification of Beijing Hanshiqiao wetland based on hyperspectral data. Spectroscopy Letters, 54(5), 381–394. https://doi.org/10.1080/00387010.2021.1928224
  • Ding, X., Zhang, S., Li, H., Wu, P., Dale, P., Liu, L., & Cheng, S. (2020). A restrictive polymorphic ant colony algorithm for the optimal band selection of hyperspectral remote sensing images. International Journal of Remote Sensing, 41(3), 1093–1117. https://doi.org/10.1080/01431161.2019.1655810
  • Dou, Z., Li, Y., Cui, L., Pan, X., Ma, Q., Huang, Y., Lei, Y., Li, J., Zhao, X., & Li, W. (2019). Hyperspectral inversion of Suaeda salsa biomass under different types of human activity in liaohe estuary wetland in north-eastern China. Marine and Freshwater Research, 71(4), 482–492. https://doi.org/10.1071/MF19030
  • Gitelson, A. A., Merzlyak, M. N., & Chivkunova, O. B. (2001). Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochemistry and Photobiology, 74(1), 38–45. https://doi.org/10.1562/0031-8655(2001)074<0038:OPANEO>2.0.CO;2
  • González Trilla, G., Pratolongo, P., Beget, M. E., Kandus, P., Marcovecchio, J., & DiBella, C. (2013). Relating biophysical parameters of coastal marshes to hyperspectral reflectance data in the Bahia Blanca estuary, Argentina. Journal of Coastal Research, 29(1), 231–238. https://doi.org/10.2112/JCOASTRES-D-11-00214.1
  • Große‐Stoltenberg, A., Hellmann, C., Thiele, J., Oldeland, J., Werner, C., & Schmidtlein, S. (2018). Invasive acacias differ from native dune species in the hyperspectral/biochemical trait space. Journal of Vegetation Science, 29(2), 325–335. https://doi.org/10.1111/jvs.12608
  • Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software: An update. Acm sigkdd Explorations Newsletter, 11(1), 10–18. https://doi.org/10.1145/1656274.1656278
  • He, N., Yan, P., Liu, C., Xu, L., Li, M., Van Meerbeek, K., Zhou, G., Zhou, G., Liu, S., Zhou, X., Li, S., Niu, S., Han, X., Buckley, T. N., Sack, L., & Yu, G. (2022). Predicting ecosystem productivity based on plant community traits. Trends in Plant Science, 28(1), 43–53. https://doi.org/10.1016/j.tplants.2022.08.015
  • Jankowska, E., & Włodarska-Kowalczuk, M. (2022). Habitat-builders complexity boosts associated fauna functional trait richness (zostera marina meadows, Baltic Sea). Ecological Indicators, 144, 109512. https://doi.org/10.1016/j.ecolind.2022.109512
  • Jiang, F., Cadotte, M. W., & Jin, G. (2022). Size-and environment-driven seedling survival and growth are mediated by leaf functional traits. Proceedings of the Royal Society B, 289(1983), 20221400. https://doi.org/10.1098/rspb.2022.1400
  • Kirwan, M. L., & Megonigal, J. P. (2013). Tidal wetland stability in the face of human impacts and sea-level rise. Nature, 504(7478), 53–60. https://doi.org/10.1038/nature12856
  • Levine, J. (2016). A trail map for trait-based studies. Nature, 529(7585), 163–164. https://doi.org/10.1038/nature16862
  • Liaw, A., & Wiener, M. (2002). Classification and regression by random forest. International Journal of Offshore and Polar Engineering, 2(3), 18–22.
  • Li, W., Dou, Z., Cui, L., Wang, R., Zhao, Z., Cui, S., Lei, Y., Li, J., Zhao, X., & Zhai, X. (2020). Suitability of hyperspectral data for monitoring nitrogen and phosphorus content in constructed wetlands. Remote Sensing Letters, 11(5), 495–504. https://doi.org/10.1080/2150704X.2020.1734247
  • Liu, M. C., Kong, D. L., Lu, X. R., Huang, K., Wang, S., Wang, W. B., Qu, B., & Feng, Y. L. (2017). Higher photosynthesis, nutrient‐and energy‐use efficiencies contribute to invasiveness of exotic plants in a nutrient poor habitat in northeast China. Physiologia plantarum, 160(4), 373–382. https://doi.org/10.1111/ppl.12566
  • Liu, C., Li, P., Xie, W., Sha, M., & Ding, W. (2021). Changes of sulfur fractions in sediment following Spartina alterniflora invasion in a seaward direction in a temperate salt marsh, China. Ecological Indicators, 131, 108217. https://doi.org/10.1016/j.ecolind.2021.108217
  • Liu, M., Mao, D., Wang, Z., Li, L., Man, W., Jia, M., Ren, C., & Zhang, Y. 1933. (2018). Rapid invasion of Spartina alterniflora in the coastal zone of mainland China: New observations from landsat OLI images. Remote Sensing, 10(12). https://doi.org/10.3390/rs10121933.
  • Liu, S., Yu, H. Y., Piao, Z. J., Chen, M. C., Yu, T., Kong, L. J., Zhang, L., Dang, J. M., & Sui, Y. Y. (2020). Study on extracting characteristic wavelength of soybean physiological information based on hyperspectral technique. Spectroscopy and Spectral Analysis, 40(11), 3542–3548. https://doi.org/10.3964/j.issn.1000-0593(2020)11-3542-07
  • Pacheco-Labrador, J., Migliavacca, M., Ma, X., Mahecha, M., Carvalhais, N., Weber, U., Benavides, R., Bouriaud, O., Barnoaiea, I., Coomes, D. A., Bohn, F. J., Kraemer, G., Heiden, U., Huth, A., & Wirth, C. (2022). Challenging the link between functional and spectral diversity with radiative transfer modeling and data. Remote Sensing of Environment, 280, 113170. https://doi.org/10.1016/j.rse.2022.113170
  • Rebelo, A. J., Somers, B., Esler, K. J., & Meire, P. (2018). Can wetland plant functional groups be spectrally discriminated? Remote Sensing of Environment, 210, 25–34. https://doi.org/10.1016/j.rse.2018.02.031
  • Reich, P. B., & Oleksyn, J. (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences, 101(30), 11001–11006. https://doi.org/10.1073/pnas.0403588101
  • Sack, L., Scoffoni, C., John, G. P., Poorter, H., Mason, C. M., Mendez-Alonzo, R., & Donovan, L. A. (2013). How do leaf veins influence the worldwide leaf economic spectrum? review and synthesis. Review and Synthesis Journal of Experimental Botany, 64(13), 4053–4080. https://doi.org/10.1093/jxb/ert316
  • Sheaves, M., Brookes, J., Coles, R., Freckelton, M., Groves, P., Johnston, R., & Winberg, P. (2014). Repair and revitalisation of Australia׳ s tropical estuaries and coastal wetlands: Opportunities and constraints for the reinstatement of lost function and productivity. Marine Policy, 47, 23–38. https://doi.org/10.1016/j.marpol.2014.01.024
  • Suykens, J. A. (2014). Introduction to machine learning. In Academic press library in signal processing (Vol. 1, pp. 765–773). Elsevier. https://doi.org/10.1016/B978-0-12-396502-8.00013-9
  • Tang, X., Dou, Z., Cui, L., Liu, Z., Gao, C., Wang, J., Li, J., Lei, Y., Zhao, X., Zhai, X., & Li, W. (2022). Hyperspectral prediction of mangrove leaf stoichiometries in different restoration areas based on machine learning models. Journal of Applied Remote Sensing, 16(3), 034525–034525. https://doi.org/10.1117/1.JRS.16.034525
  • Tian, B., Wu, W., Yang, Z., & Zhou, Y. (2016). Drivers, trends, and potential impacts of long-term coastal reclamation in China from 1985 to 2010. Estuarine, Coastal and Shelf Science, 170, 83–90. https://doi.org/10.1016/j.ecss.2016.01.006
  • Violle, C., Navas, M. L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., & Garnier, E. (2007). Let the concept of trait be functional. Oikos, 116(5), 882–892. https://doi.org/10.1111/j.0030-1299.2007.15559.x
  • Wang, L., & Wei, Y. (2016). Revised normalized difference nitrogen index (NDNI) for estimating canopy nitrogen concentration in wetlands. Optik, 127(19), 7676–7688. https://doi.org/10.1016/j.ijleo.2016.05.115
  • Wan, R., Wang, P., & Wang, X. (2018). Modeling wetland aboveground biomass in the poyang lake national nature reserve using machine learning algorithms and landsat-8 imagery. Journal of Applied Remote Sensing, 12(4), 046029–046029. https://doi.org/10.1117/1.JRS.12.046029
  • Westoby, M., & Wright, I. J. (2006). Land-plant ecology on the basis of functional traits. Trends in Ecology & Evolution, 21(5), 261–268. https://doi.org/10.1016/j.tree.2006.02.004
  • Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109–130. https://doi.org/10.1016/S0169-7439(01)00155-1
  • Yao, Y., Wang, X., Tan, X., & Shan, Y. (2022). Models building between leaf spectral reflectance and traits for typical marshland wetland plants based on plsr: A case of sanjiang national nature reserve. Scientia geographica sinica, 42(9), 1638–1645. https://doi.org/10.13249/j.cnki.sgs.2022.09.013
  • Yendrek, C. R., Tomaz, T., Montes, C. M., Cao, Y., Morse, A. M., Brown, P. J., McIntyre, L. M., Leakey, A. D. B., & Ainsworth, E. A. (2017). High-throughput phenotyping of maize leaf physiological and biochemical traits using hyperspectral reflectance. Plant Physiology, 173(1), 614–626. https://doi.org/10.1104/pp.16.01447
  • Yu, C., Cao, J., Du, W., Zhu, Z., & Xu, M. (2022). Changes in the population and functional profile of bacteria and fungi in the rhizosphere of Suaeda salsa is driven by invasion of spartina alterniflora. Ecological Indicators, 144, 109516. https://doi.org/10.1016/j.ecolind.2022.109516
  • Zhang, M., Li, M., Liu, W., Cui, L., Li, W., Wang, H., Wei, Y., Guo, Z., Wang, D., Hu, Y., Xu, W., Yang, S., Xiao, H., & Long, S. (2019). Analyzing the performance of statistical models for estimating leaf nitrogen concentration of phragmites australis based on leaf spectral reflectance. Spectroscopy Letters, 52(9), 483–491. https://doi.org/10.1080/00387010.2019.1619584
  • Zhang, R., Liu, H. M., Kou, X., Xu, Z. C., Yu, X. W., Cao, X. A., Wen, L., Ma, L. Q, & Wang, L. X. (2022). Functional traits of dominant plants and their adaptations in lakeshore wetlands of the inner mongolia plateau. Acta Ecologica Sinica, 42(19), 7773–7784. https://doi.org/10.5846/stxb202110092802
  • Zhou, Y., Jiao, L., Qin, H. J., Wu, J. J., & Che, X. C. (2022). Responses of leaf functional traits of clonal plant phragmites australis to heterogeneous environments. The Journal of Applied Ecology, 33(8), 2171–2177. https://doi.org/10.13287/j.1001-9332.202208.010
  • Zhu, Y., Wu, Y., Zhou, Z., Zhang, Z., & An, Y. (2020). Inversion of nutrient components of Spartina alterniflora based on hyperspectral data. Journal of Beijing Forestry University, 42(9), 92–99. https://doi.org/10.12171/j.1000−1522.20200008
  • Zhu, H., Yang, L., Li, D. B., He, L. P., Yue, C. L., & Li, H. P. (2023). Functional traits of twelve species of marsh plants in siming mountain, zhejiang Province. Acta Ecologica Sinica, 43(7), 2881–2890. https://doi.org/10.5846/stxb202203300788
  • Zuo, X. Y., Cui, L. J., Li, W., Dou, Z. G., Cai, Y., Liu, Z. J., & Lei, Y. R. (2021). Inversion of functional traits of spartina alterniflora leaves based on hyperspectral data. Acta Ecologica Sinica, 41(15), 6159–6269. https://doi.org/10.5846/stxb202004020781