899
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mitigating the impact of dense vegetation on the Sentinel-1 surface soil moisture retrievals over Europe

ORCID Icon, , , , &
Article: 2300985 | Received 01 Nov 2023, Accepted 27 Dec 2023, Published online: 10 Jan 2024

References

  • Alfieri, L., Avanzi, F., Delogu, F., Gabellani, S., Bruno, G., Campo, L., Libertino, A., Massari, C., Tarpanelli, A., Rains, D., Miralles, D G., Quast, R., Vreugdenhil, M., Wu, H., Brocca, L., others. (2022). High-resolution satellite products improve hydrological modeling in northern Italy. Hydrology and Earth System Sciences, 26(14), 3921–16. https://doi.org/10.5194/hess-26-3921-2022
  • Avitabile, V., Camia, A., & Pilli, R. (2020). The biomass of European forests. An integrated assessment of forest biomass maps, field plots and national statistics. https://doi.org/10.2760/311876
  • Baghdadi, N., Bazzi, H., El Hajj, M., & Zribi, M. (2018). Detection of frozen soil using sentinel-1 SAR data. Remote Sensing, 10(8), 1182. https://doi.org/10.3390/rs10081182
  • Bauer-Marschallinger, B. (2022). Quality assessment report - update 2021 - surface soil moisture, collection 1km. Copernicus Global Land Operations – “Vegetation and Energy”, Version 1.
  • Bauer-Marschallinger, B., Freeman, V., Cao, S., Paulik, C., Schaufler, S., Stachl, T., Modanesi, S., Massari, C., Ciabatta, L., Brocca, L., & Wagner, W. (2019). Toward global soil moisture monitoring with sentinel-1: Harnessing assets and overcoming obstacles. IEEE Transactions on Geoscience and Remote Sensing, 57(1), 520–539. https://doi.org/10.1109/TGRS.2018.2858004
  • Bauer-Marschallinger, B., Paulik, C., Hochstöger, S., Mistelbauer, T., Modanesi, S., Ciabatta, L., Massari, C., Brocca, L., & Wagner, W. (2018). Soil moisture from fusion of scatterometer and SAR: Closing the scale gap with temporal filtering. Remote Sensing, 10(7), 1030. https://doi.org/10.3390/rs10071030
  • Bauer-Marschallinger, B., Paulik, C., & Schaufler, S. (2018). Copernicus global land operations “vegetation and energy”: Algorithm theoretical basis document: Surface soil moisture - collection 1km - version 1.0.
  • Bauer-Marschallinger, B., Sabel, D., & Wagner, W. (2014). Optimisation of global grids for high-resolution remote sensing data. Computers and Geosciences, 72, 84–93. https://doi.org/10.1016/j.cageo.2014.07.005
  • Büttner, G. (2014). CORINE land cover and land cover change products. In Land use and land cover mapping in Europe: Practices & trends (pp. 55–74). Springer.
  • Chatterjee, S., Huang, J., & Hartemink, A. E. (2020). Establishing an empirical model for surface soil moisture retrieval at the US climate reference network using sentinel-1 backscatter and ancillary data. Remote Sensing, 12(8), 1242. https://doi.org/10.3390/rs12081242
  • Dari, J., Brocca, L., Modanesi, S., Massari, C., Tarpanelli, A., Barbetta, S., Quast, R., Vreugdenhil, M., Freeman, V., Barella-Ortiz, A., Quintana-Seguí, P., Bretreger, D., Volden, E., others. (2023). Regional data sets of high-resolution (1 and 6 km) irrigation estimates from space. Earth System Science Data, 15(4), 1555–1575. https://doi.org/10.5194/essd-15-1555-2023
  • De Keersmaecker, D., Van De Kerchove, R., Zanaga, W., Souverijns, N., Brockmann, C., Quast, R., Wevers, J., Grosu, A., Paccini, A., Vergnaud, S., Cartus, O., Santoro, M., Fritz, S., Georgieva, I., Lesiv, M., Carter, S., Herold, M., Li, L., Tsendbazar, N.-E.; Arino, O. (2021). ESA WorldCover 10 m 2020 v100. Nature Communications, 12(1), Zenodo. https://doi.org/10.5281/zenodo.5571936
  • Dorigo, W., Himmelbauer, I., Aberer, D., Schremmer, L., Petrakovic, I., Zappa, L., Preimesberger, W., Xaver, A., Annor, F., Ardö, J., Baldocchi, D., Bitelli, M., Blöschl, G., Bogena, H., Brocca, L., Calvet, J. C., Camarero, J. J., Capello, G., Choi, M., … Sabia, R. (2021). The international soil moisture network: Serving earth system science for over a decade. Hydrology and Earth System Sciences, 25(11), 5749–5804. https://doi.org/10.5194/hess-25-5749-2021
  • Dorigo, W. A., Wagner, W., Hohensinn, R., Hahn, S., Paulik, C., Xaver, A., Gruber, A., Drusch, M., Mecklenburg, S., Van Oevelen, P., Robock, A., & Jackson, T. (2011). The international soil moisture network: A data hosting facility for global in situ soil moisture measurements. Hydrology and Earth System Sciences, 15(5), 1675–1698. https://doi.org/10.5194/hess-15-1675-2011
  • Dostálová, A., Lang, M., Ivanovs, J., Waser, L. T., & Wagner, W. (2021). European wide forest classification based on sentinel-1 data. Remote Sensing, 13(3), 1–27. https://doi.org/10.3390/rs13030337
  • Dostálová, A., Wagner, W., Milenković, M., & Hollaus, M. (2018). Annual seasonality in sentinel-1 signal for forest mapping and forest type classification. International Journal of Remote Sensing, 39(21), 7738–7760. https://doi.org/10.1080/01431161.2018.1479788
  • EEA. (2018). Copernicus land monitoring service 2018. © European Union.
  • Fayad, I., Baghdadi, N., Bazzi, H., & Zribi, M. (2020). Near real-time freeze detection over agricultural plots using Sentinel-1 data. Remote Sensing, 12(12), 1976. https://doi.org/10.3390/rs12121976
  • Ford, T. W., & Quiring, S. M. (2019). Comparison of contemporary in situ, model, and satellite remote sensing soil moisture with a focus on drought monitoring. Water Resources Research, 55(2), 1565–1582. https://doi.org/10.1029/2018WR024039
  • Foucras, M., Zribi, M., Albergel, C., Baghdadi, N., Calvet, J.-C., & Pellarin, T. (2020). Estimating 500-m resolution soil moisture using Sentinel-1 and optical data synergy. Water, 12(3), 866. https://doi.org/10.3390/w12030866
  • Ge, Y., Thomasson, J. A., & Sui, R. (2011). Remote sensing of soil properties in precision agriculture: A review. Frontiers of Earth Science, 5(3), 229–238. https://doi.org/10.1007/s11707-011-0175-0
  • Hajdu, I., Yule, I., & Dehghan-Shear, M. H. (2018). Modelling of near-surface soil moisture using machine learning and multi-temporal sentinel 1 images in New Zealand. IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, 1422–1425. https://doi.org/10.1109/IGARSS.2018.8518657
  • Hegazi, E. H., Yang, L., & Huang, J. (2021). A convolutional neural network algorithm for soil moisture prediction from sentinel-1 SAR images. Remote Sensing, 13(24), 4964. https://doi.org/10.3390/rs13244964
  • Hornacek, M., Wagner, W., Sabel, D., Truong, H.-L., Snoeij, P., Hahmann, T., Diedrich, E., & Doubkova, M. (2012). Potential for high resolution systematic global surface soil moisture retrieval via change detection using sentinel-1. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(4), 1303–1311. https://doi.org/10.1109/JSTARS.2012.2190136
  • Karthikeyan, L., Pan, M., Wanders, N., Kumar, D. N., & Wood, E. F. (2017). Four decades of microwave satellite soil moisture observations: Part 1. A review of retrieval algorithms. Advances in Water Resources, 109, 106–120. https://doi.org/10.1016/j.advwatres.2017.09.006
  • Kim, S., Zhang, R., Pham, H., & Sharma, A. (2019). A review of satellite-derived soil moisture and its usage for flood estimation. Remote Sensing in Earth Systems Sciences, 2(4), 225–246. https://doi.org/10.1007/s41976-019-00025-7
  • Laiolo, P., Gabellani, S., Campo, L., Silvestro, F., Delogu, F., Rudari, R., Pulvirenti, L., Boni, G., Fascetti, F., Pierdicca, N., Crapolicchio, R., Hasenauer, S., & Puca, S. (2016). Impact of different satellite soil moisture products on the predictions of a continuous distributed hydrological model. International Journal of Applied Earth Observation and Geoinformation, 48, 131–145. https://doi.org/10.1016/j.jag.2015.06.002
  • Lal, P., Singh, G., Das, N. N., Entekhabi, D., Lohman, R., Colliander, A., Pandey, D. K., & Setia, R. K. (2023). A multi-scale algorithm for the NISAR mission high-resolution soil moisture product. Remote Sensing of Environment, 295, 113667. https://doi.org/10.1016/j.rse.2023.113667
  • Madelon, R., Rodríguez-Fernández, N. J., Bazzi, H., Baghdadi, N., Albergel, C., Dorigo, W., & Zribi, M. (2023). Soil moisture estimates at 1 km resolution making a synergistic use of Sentinel data. Hydrology and Earth System Sciences, 27(6), 1221–1242. https://doi.org/10.5194/hess-27-1221-2023
  • Ma, C., Li, X., & McCabe, M. F. (2020). Retrieval of high-resolution soil moisture through combination of sentinel-1 and sentinel-2 data. Remote Sensing, 12(14), 2303. https://doi.org/10.3390/rs12142303
  • Mengen, D., Jagdhuber, T., Balenzano, A., Mattia, F., Vereecken, H., & Montzka, C. (2023). High spatial and temporal soil moisture retrieval in agricultural areas using multi-orbit and vegetation adapted sentinel-1 SAR time series. Remote Sensing, 15(9), 2282. https://doi.org/10.3390/rs15092282
  • Morrison, K., & Wagner, W. (2020). Explaining anomalies in SAR and scatterometer soil moisture retrievals from dry soils with subsurface scattering. IEEE Transactions on Geoscience and Remote Sensing, 58(3), 2190–2197. https://doi.org/10.1109/TGRS.2019.2954771
  • Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D G., Piles, M., Rodríguez-Fernández, N J., Zsoter, E., Buontempo, C., Thépaut, J-N., others. (2021). ERA5-land: A state-of-the-art global reanalysis dataset for land applications. Earth System Science Data, 13(9), 4349–4383. https://doi.org/10.5194/essd-13-4349-2021
  • Nativel, S., Ayari, E., Rodriguez-Fernandez, N., Baghdadi, N., Madelon, R., Albergel, C., & Zribi, M. (2022). Hybrid methodology using sentinel-1/sentinel-2 for soil moisture estimation. Remote Sensing, 14(10), 2434. https://doi.org/10.3390/rs14102434
  • Nguyen, H. H., Cho, S., Jeong, J., & Choi, M. (2021). A D-vine copula quantile regression approach for soil moisture retrieval from dual polarimetric SAR Sentinel-1 over vegetated terrains. Remote Sensing of Environment, 255, 112283. https://doi.org/10.1016/j.rse.2021.112283
  • Pathe, C., Wagner, W., Sabel, D., Doubkova, M., & Basara, J. B. (2009). Using ENVISAT ASAR global mode data for surface soil moisture retrieval over Oklahoma, USA. IEEE Transactions on Geoscience and Remote Sensing, 47(2), 468–480. https://doi.org/10.1109/TGRS.2008.2004711
  • Peng, J., Albergel, C., Balenzano, A., Brocca, L., Cartus, O., Cosh, M. H., Crow, W. T., Dabrowska-Zielinska, K., Dadson, S., Davidson, M. W. J., de Rosnay, P., Dorigo, W., Gruber, A., Hagemann, S., Hirschi, M., Kerr, Y. H., Lovergine, F., Mahecha, M. D., Marzahn, P., … Loew, A. (2020). A roadmap for high-resolution satellite soil moisture applications – confronting product characteristics with user requirements. Remote Sensing of Environment, 252, 112162. https://doi.org/10.1016/j.rse.2020.112162
  • Quast, R., Wagner, W., Bauer-Marschallinger, B., & Vreugdenhil, M. (2023). Soil moisture retrieval from sentinel-1 using a first-order radiative transfer model—A case-study over the po-valley. Remote Sensing of Environment, 295, 113651. https://doi.org/10.1016/j.rse.2023.113651
  • Robock, A., Vinnikov, K. Y., Srinivasan, G., Entin, J. K., Hollinger, S. E., Speranskaya, N. A., Liu, S., & Namkhai, A. (2000). The global soil moisture data bank. Bulletin of the American Meteorological Society, 81(6), 1281–1299. https://doi.org/10.1175/1520-0477(2000)081<1281:TGSMDB>2.3.CO;2
  • Rüetschi, M., Schaepman, M. E., & Small, D. (2017). Using multitemporal sentinel-1 c-band backscatter to monitor phenology and classify deciduous and coniferous forests in northern switzerland. Remote Sensing, 10(1), 55. https://doi.org/10.3390/rs10010055
  • Sannier, C., & Pennec, A. (2017). GMES Initial Operations/Copernicus Land Monitoring Services-Validation of Products -Comparative Validation of HRL-TCD and University of Maryland Global Forest Change Products. (p. 23). https://land.copernicus.eu/user-corner/technical-library/comparative-validation
  • Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., Orlowsky, B., & Teuling, A. J. (2010). Investigating soil moisture-climate interactions in a changing climate: A review. Earth Science Review, 99(3–4), 125–161. https://doi.org/10.1016/j.earscirev.2010.02.004
  • Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E., Potin, P., Rommen, B. Ö., Floury, N., Brown, M., Traver, I. N., Deghaye, P., Duesmann, B., Rosich, B., Miranda, N., Bruno, C., L’Abbate, M., Croci, R., Pietropaolo, A., … Rostan, F. (2012). GMES sentinel-1 mission. Remote Sensing of Environment, 120, 9–24. https://doi.org/10.1016/j.rse.2011.05.028
  • Ulaby, F.T., Richard, K. Moore, & Adrian, K. Fung. (1986). Microwave remote sensing active and passive-volume {III}: From theory to applications. Artech house.
  • Vreugdenhil, M., Greimeister-Pfeil, I., Preimesberger, W., Camici, S., Dorigo, W., Enenkel, M., van der Schalie, R., Steele-Dunne, S., & Wagner, W. (2022). Microwave remote sensing for agricultural drought monitoring: Recent developments and challenges. Frontiers in Water, 4, 1045451. https://doi.org/10.3389/frwa.2022.1045451
  • Wagner, W., Lemoine, G., & Rott, H. (1999). A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sensing of Environment, 70(2), 191–207. https://doi.org/10.1016/S0034-4257(99)00036-X
  • Wagner, W., Lindorfer, R., Melzer, T., Hahn, S., Bauer-Marschallinger, B., Morrison, K., Calvet, J.-C., Hobbs, S., Quast, R., Greimeister-Pfeil, I., Vreugdenhil, M., others. (2022). Widespread occurrence of anomalous C-band backscatter signals in arid environments caused by subsurface scattering. Remote Sensing of Environment, 276, 113025. https://doi.org/10.1016/j.rse.2022.113025
  • Yuan, X., Ma, Z., Pan, M., & Shi, C. (2015). Microwave remote sensing of short-term droughts during crop growing seasons. Geophysical Research Letters, 42(11), 4394–4401. https://doi.org/10.1002/2015GL064125
  • Zanaga, D., Van de Kerchove, R., Daems, D., De Keersmaecker, W., Brockmann, C., Kirches, G., Wevers, J., Cartus, O., Santoro, M., Fritz, S., Lesiv, M., Herold, M., Tsendbazar, N.-E., Xu, P., Ramoino, F., & Arino, O. (2022). ESA WorldCover 10 m 2021 v200.
  • Zhu, L., Si, R., Shen, X., & Walker, J. P. (2022). An advanced change detection method for time-series soil moisture retrieval from sentinel-1. Remote Sensing of Environment, 279, 113137. https://doi.org/10.1016/j.rse.2022.113137