780
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Regional estimates of gross primary production applying the Process-Based Model 3D-CMCC-FEM vs. Remote-Sensing multiple datasets

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2301657 | Received 10 Jul 2023, Accepted 31 Dec 2023, Published online: 09 Jan 2024

References

  • Allen, C. D., Breshears, D. D., & McDowell, N. G. (2015). On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the anthropocene. Ecosphere, 6(8), 1–24. https://doi.org/10.1890/ES15-00203.1
  • Bacour, C., Maignan, F., MacBean, N., Porcar-Castell, A., Flexas, J., Frankenberg, C., Peylin, P., Chevallier, F., Vuichard, N., & Bastrikov, V. (2019). Improving estimates of gross primary productivity by assimilating solar-induced fluorescence satellite retrievals in a terrestrial biosphere Model using a process-based SIF Model. Journal of Geophysical Research: Biogeosciences, 124(11), 3281–3306. https://doi.org/10.1029/2019JG005040
  • Bandhauer, M., Isotta, F., Lakatos, M., Lussana, C., Båserud, L., Izsák, B., Szentes, O., Tveito, O. E., & Frei, C. (2022). Evaluation of daily precipitation analyses in E-OBS (v19.0e) and ERA5 by comparison to regional high-resolution datasets in European regions. International Journal of Climatology, 42(2), 727–747. https://doi.org/10.1002/joc.7269
  • Barbati, A., Corona, P., & Marchetti, M. (2007). A forest typology for monitoring sustainable forest management: The case of European forest types. Plant Biosystems - an International Journal Dealing with All Aspects of Plant Biology, 141(1), 93–103. https://doi.org/10.1080/11263500601153842
  • Bastos, A., Orth, R., Reichstein, M., Ciais, P., Viovy, N., Zaehle, S., Anthoni, P., Arneth, A., Gentine, P., Joetzjer, E., Lienert, S., Loughran, T., McGuire, P. C., Sungmin, O., Pongratz, J., & Sitch, S. (2021). Vulnerability of European ecosystems to two compound dry and hot summers in 2018 and 2019. Earth System Dynamics, 12(4), 1015–1035. https://doi.org/10.5194/esd-12-1015-2021
  • Bivand, R., Keitt, T., Rowlingson, B., Pebesma, E., Sumner, M., Hijmans, R., Baston, D., Rouault, E., Warmerdam, F., Ooms, J., & Rundel, C. (2015). Package ‘rgdal’. Bindings for the Geospatial Data Abstraction Library. Available online: https://cran.r-project.org/web/packages/rgdal/index.html
  • Bugmann, H., & Seidl, R. (2022). The evolution, complexity and diversity of models of long-term forest dynamics. Journal of Ecology, 110(10), 2288–2307. https://doi.org/10.1111/1365-2745.13989
  • Butterfield, Z., Buermann, W., & Keppel-Aleks, G. (2020). Satellite observations reveal seasonal redistribution of northern ecosystem productivity in response to interannual climate variability. Remote Sensing of Environment, 242(June 2019), 111755. https://doi.org/10.1016/j.rse.2020.111755
  • Byrne, B., Wunch, D., Jones, D. B. A., Strong, K., Deng, F., Baker, I., Köhler, P., Frankenberg, C., Joiner, J., Arora, V. K., Badawy, B., Harper, A. B., Warneke, T., Petri, C., Kivi, R., & Roehl, C. M. (2018). Evaluating GPP and respiration estimates over northern midlatitude ecosystems using solar-induced fluorescence and atmospheric CO 2 measurements. Journal of Geophysical Research: Biogeosciences, 123(9), 2976–2997. https://doi.org/10.1029/2018JG004472
  • Camps-Valls, G. (2021). A unified vegetation index for quantifying the terrestrial biosphere. Science Advances, 7(9). https://doi.org/10.1126/sciadv.abc7447
  • Carvalhais, N., Reichstein, M., Ciais, P., Collatz, G. J., Mahecha, M. D., Montagnani, L., Papale, D., Rambal, S., & Seixas, J. (2010). Identification of vegetation and soil carbon pools out of equilibrium in a process model via eddy covariance and biometric constraints. Global Change Biology, 16(10), 2813–2829. https://doi.org/10.1111/j.1365-2486.2010.02173.x
  • Carvalhais, N., Reichstein, M., Seixas, J., Colltaz, G. J., Pereira, J. S., Berbigier, P., Carrara, A., Granier, A., Montagnani, L., Papale, D., Rambal, S., Sanz, M. J., & Valentini, R. (2008). Implications of the carbon cycle steady state assumption for biogeochemical modeling performance and inverse parameter retrieval. Global Biogeochemical Cycles, 22(2), 1–16. https://doi.org/10.1029/2007GB003033
  • Castellaneta, M., Rita, A., Camarero, J. J., Colangelo, M., & Ripullone, F. (2022). Declines in canopy greenness and tree growth are caused by combined climate extremes during drought-induced dieback. Science of the Total Environment, 813, 152666. https://doi.org/10.1016/j.scitotenv.2021.152666
  • Chen, Keski-Saari, S., Kontunen-Soppela, S., Zhu, X., Zhou, X., Hänninen, H., Pumpanen, J., Mola-Yudego, B., Wu, D., & Berninger, F. (2023). Immediate and carry-over effects of late-spring frost and growing season drought on forest gross primary productivity capacity in the Northern Hemisphere. Global Change Biology, 2022(14), 3924–3940. October. https://doi.org/10.1111/gcb.16751
  • Chen, A., Mao, J., Ricciuto, D., Lu, D., Xiao, J., Li, X., Thornton, P. E., & Knapp, A. K. (2021). Seasonal changes in GPP/SIF ratios and their climatic determinants across the Northern Hemisphere. Global Change Biology, 27(20), 5186–5197. https://doi.org/10.1111/gcb.15775
  • Chiesi, M., Moriondo, M., Maselli, F., Gardin, L., Fibbi, L., Bindi, M., & Running, S. W. (2010). Simulation of Mediterranean forest carbon pools under expected environmental scenarios. Canadian Journal of Forest Research, 40(5), 850–860. https://doi.org/10.1139/X10-037
  • Chirici, G. (2016). Estimating daily forest carbon fluxes using a combination of ground and remotely sensed data. JGR Biogeosciences, 121(2), 266–279. https://doi.org/10.1002/2015JG003019
  • Chirici, G., Giannetti, F., McRoberts, R. E., Travaglini, D., Pecchi, M., Maselli, F., Chiesi, M., & Corona, P. (2020). Wall-to-wall spatial prediction of growing stock volume based on Italian National Forest Inventory plots and remotely sensed data. International Journal of Applied Earth Observation and Geoinformation, 84(September 2019), 101959. https://doi.org/10.1016/j.jag.2019.101959
  • Collalti, A., Biondo, C., Buttafuoco, G., Maesano, M., Caloiero, T., Lucà, F., Pellicone, G., Ricca, N., Salvati, R., Veltri, A., Scarascia-Mugnozza, G., & Matteucci, G. (2017). Simulation, calibration and validation protocols for the model 3D-CMCC-CNR-FEM: A case study in the Bonis’ watershed (Calabria, Italy). Forest@ - Rivista di Selvicoltura ed Ecologia Forestale, 14(4), 247–256. https://doi.org/10.3832/efor2368-014
  • Collalti, A., Dalmonech, D., Marano, G., Vangi, E., Puchi, P., Grieco, E., & Orrico, M. (2022). “3D-CMCC-FEM User’s Guide”. https://doi.org/10.32018/3D-CMCC-FEM-2022
  • Collalti, A., Marconi, S., Ibrom, A., Trotta, C., Anav, A., D’andrea, E., Matteucci, G., Montagnani, L., Gielen, B., Mammarella, I., Grünwald, T., Knohl, A., Berninger, F., Zhao, Y., Valentini, R., & Santini, M. (2016). Validation of 3D-CMCC Forest Ecosystem Model (v.5.1) against eddy covariance data for 10 European forest sites. Geoscientific Model Development, 9(2), 479–504. https://doi.org/10.5194/gmd-9-479-2016
  • Collalti, A., Perugini, L., Santini, M., Chiti, T., Nolè, A., Matteucci, G., & Valentini, R. (2014). A process-based model to simulate growth in forests with complex structure: Evaluation and use of 3D-CMCC forest ecosystem model in a deciduous forest in Central Italy. Ecological Modelling, 272, 362–378. https://doi.org/10.1016/j.ecolmodel.2013.09.016
  • Collalti, A., & Prentice, I. C. (2019). Is NPP proportional to GPP? Waring’s hypothesis twenty years on. Tree Physiology, 39(8), 1473–1483. https://doi.org/10.1093/treephys/tpz034
  • Collalti, A., Thornton, P. E., Cescatti, A., Rita, A., Borghetti, M., Nolè, A., Trotta, C., Ciais, P., & Matteucci, G. (2019). The sensitivity of the forest carbon budget shifts across processes along with stand development and climate change. Ecological Applications, 29(2), 1–18. https://doi.org/10.1002/eap.1837
  • Collalti, A., Tjoelker, M. G., Hoch, G., Mäkelä, A., Guidolotti, G., Heskel, M., Petit, G., Ryan, M. G., Battipaglia, G., Matteucci, G., & Prentice, I. C. (2020). Plant respiration: Controlled by photosynthesis or biomass? Global Change Biology, 26(3), 1739–1753. https://doi.org/10.1111/gcb.14857
  • Collalti, A., Trotta, C., Keenan, T. F., Ibrom, A., Bond-Lamberty, B., Grote, R., Vicca, S., Reyer, C. P. O., Migliavacca, M., Veroustraete, F., Anav, A., Campioli, M., Scoccimarro, E., Šigut, L., Grieco, E., Cescatti, A., & Matteucci, G. (2018). Thinning can reduce losses in carbon use efficiency and carbon stocks in managed forests under warmer climate. Journal of Advances in Modeling Earth Systems, 10(10), 2427–2452. https://doi.org/10.1029/2018MS001275
  • Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. M., & Jones, P. D. (2018). An ensemble version of the E-OBS temperature and precipitation data sets. Journal of Geophysical Research: Atmospheres, 123(17), 9391–9409. https://doi.org/10.1029/2017JD028200
  • Costantini, G., Bellotti, A., Mancino, G., & Borghetti, M. (2006). Ferrara - Carta Forestale della Basilicata. Atlante - Re- gione Basilicata, Istituto Nazionale di Economia Agraria.
  • Crow, W. T., Gomez, C. A., Sabater, J. M., Holmes, T., Hain, C. R., Lei, F., Dong, J., Alfieri, J. G., & Anderson, M. C. (2020). Soil moisture–evapotranspiration overcoupling and l-band brightness temperature assimilation: Sources and forecast implications. Journal of Hydrometeorology, 21(10), 2359–2374. https://doi.org/10.1175/JHM-D-20-0088.1
  • Dalmonech, D., Marano, G., Amthor, J. S., Cescatti, A., Lindner, M., Trotta, C., & Collalti, A. (2022). Feasibility of enhancing carbon sequestration and stock capacity in temperate and boreal European forests via changes to management regimes. Agricultural and Forest Meteorology, 327(April), 109203. https://doi.org/10.1016/j.agrformet.2022.109203
  • Dalmonech, D., Zaehle, S., J, S. G., Brovkin, V., Reick, C., & Schnur, R. (2015). Separation of the effects of land and climate Model errors on simulated contemporary land carbon cycle trends in the MPI earth system Model version 1*. Journal of Climate, 28(1), 272–291. https://doi.org/10.1175/JCLI-D-13-00593.110.1175/JCLI-D-13-00593.s1
  • D’Andrea, E., Rezaie, N., Prislan, P., Gričar, J., Collalti, A., Muhr, J., & Matteucci, G. (2020). Frost and drought: Effects of extreme weather events on stem carbon dynamics in a Mediterranean beech forest. Plant Cell and Environment, 43(10), 2365–2379. https://doi.org/10.1111/pce.13858
  • D’Andrea, E., Scartazza, A., Battistelli, A., Collalti, A., Proietti, S., Rezaie, N., Matteucci, G., Moscatello, S., & Meinzer, F. (2021). Unravelling resilience mechanisms in forests: Role of non-structural carbohydrates in responding to extreme weather events. Tree Physiology, 41(10), 1808–1818. https://doi.org/10.1093/treephys/tpab044
  • De Marco, A., Sicard, P., Feng, Z., Agathokleous, E., Alonso, R., Araminiene, V., Augustatis, A., Badea, O., Beasley, J. C., Branquinho, C., Bruckman, V. J., Collalti, A., David-Schwartz, R., Domingos, M., Du, E., Garcia Gomez, H., Hashimoto, S., Hoshika, Y., Jakovljevic, T., McNulty, S., and Paoletti, E. (2022). Strategic roadmap to assess forest vulnerability under air pollution and climate change. Global Change Biology, 28(17), 5062–5085. https://doi.org/10.1111/gcb.16278
  • De Pury, D. G. G., & Farquhar, G. D. (1997). Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant, Cell and Environment, 20(5), 537–557. https://doi.org/10.1111/j.1365-3040.1997.00094.x
  • Dosio, A., & Paruolo, P. (2011). Bias correction of the ENSEMBLES high-resolution climate change projections for use by impact models: Evaluation on the present climate. Journal of Geophysical Research Atmospheres, 116(16), 1–22. https://doi.org/10.1029/2011JD015934
  • Dubrovský, M., Hayes, M., Duce, P., Trnka, M., Svoboda, M., & Zara, P. (2014). Multi-GCM projections of future drought and climate variability indicators for the Mediterranean region. Regional Environmental Change, 14(5), 1907–1919. https://doi.org/10.1007/s10113-013-0562-z
  • Dunkl, I., Lovenduski, N., Collalti, A., Arora, V. K., Ilyina, T., & Brovkin, V. (2023). Gross primary productivity and the predictability of CO2: More uncertainty in what we predict than how well we predict it. Biogeosciences, 20(16), 3523–3538. https://doi.org/10.5194/bg-20-3523-2023
  • Engel, M., Vospernik, S., Toigo, M., Morin, X., Tomao, A., Trotta, C., Steckel, M., Barbati, A., Pretzsch, N. A., Del Rio, H., Skrzyszewski, M., Ponette, J., Lof, Q., Jansons, M., & Brazaitis, A. (2021). Simulating the effects of thinning and species mixing on stands of oak (Quercus petraea (Matt.) Liebl./Quercus robur L.) and pine (Pinus sylvestris L.) across Europe. Ecological Modelling, 442(15), 109406. https://doi.org/10.1016/j.ecolmodel.2020.109406
  • Fang, J., & Lechowicz, M. J. (2006). Climatic limits for the present distribution of beech (Fagus L.) species in the world. Journal of Biogeography, 33(10), 1804–1819. https://doi.org/10.1111/j.1365-2699.2006.01533.x
  • Fang, Y., Leung, L. R., Wolfe, B. T., Detto, M., Knox, R. G., McDowell, N. G., Grossiord, C., Xu, C., Christoffersen, B. O., Gentine, P., Koven, C. D., & Chambers, J. Q. (2021). Disentangling the effects of vapor pressure deficit and soil water availability on canopy conductance in a seasonal tropical forest during the 2015 El niño drought. Journal of Geophysical Research: Atmospheres, 126(10), 1–20. https://doi.org/10.1029/2021JD035004
  • Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B., & Otero-Casal, C. (2017). Hydrologic regulation of plant rooting depth. Proceedings of the National Academy of Sciences of the United States of America, 114(40), 10572–10577. https://doi.org/10.1073/pnas.1712381114
  • Farquhar, G. D., Caemmerer, S., & Berry, J. A. (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149(1), 78-90–90. https://doi.org/10.1007/BF00386231
  • Fernández-Martínez, M., Peñuelas, J., Chevallier, F., Ciais, P., Obersteiner, M., Rödenbeck, C., Sardans, J., Vicca, S., Yang, H., Sitch, S., Friedlingstein, P., Arora, V. K., Goll, D. S., Jain, A. K., Lombardozzi, D. L., McGuire, P. C., & Janssens, I. A. (2023). Diagnosing destabilization risk in global land carbon sinks.Nature, 615(November 2021). https://doi.org/10.1038/s41586-023-05725-1
  • Fibbi, L., Chiesi, M., Moriondo, M., Bindi, M., Chirici, G., Papale, D., Gozzini, B., & Maselli, F. (2016). Correction of a 1 km daily rainfall dataset for modelling forest ecosystem processes in Italy. Meteorological Applications, 23(2), 294–303. https://doi.org/10.1002/met.1554
  • Flexas, J., Diaz-Espejo, A., Gago, J., Gallé, A., Galmés, J., Gulías, J., & Medrano, H. (2014). Photosynthetic limitations in Mediterranean plants: A review. Environmental and Experimental Botany, 103, 12–23. https://doi.org/10.1016/j.envexpbot.2013.09.002
  • Francini, S., McRoberts, R. E., Giannetti, F., Marchetti, M., Scarascia Mugnozza, G., & Chirici, G. (2021). The three Indices three Dimensions (3I3D) algorithm: A new method for forest disturbance mapping and area estimation based on optical remotely sensed imagery. International Journal of Remote Sensing, 42(12), 4697–4715. https://doi.org/10.1080/01431161.2021.1899334
  • Fyllas, N. M., Christopoulou, A., Galanidis, A., Michelaki, C. Z., Dimitrakopoulos, P. G., Fulé, P. Z., & Arianoutsou, M. (2017). Tree growth-climate relationships in a forest-plot network on Mediterranean mountains. Science of the Total Environment, 598, 393–403. https://doi.org/10.1016/j.scitotenv.2017.04.145
  • Gauquelin, T., Michon, G., Joffre, R., Duponnois, R., Génin, D., Fady, B., Bou Dagher-Kharrat, M., Derridj, A., Slimani, S., Badri, W., Alifriqui, M., Auclair, L., Simenel, R., Aderghal, M., Baudoin, E., Galiana, A., Prin, Y., Sanguin, H., Fernandez, C., & Baldy, V. (2018). Mediterranean forests, land use and climate change: A social-ecological perspective. Regional Environmental Change, 18(3), 623–636. https://doi.org/10.1007/s10113-016-0994-3
  • Giannetti, F., Chirici, G., Vangi, E., Corona, P., Maselli, F., Chiesi, M., D’Amico, G., & Puletti, N. (2022). Wall-to-wall mapping of Forest Biomass and wood volume increment in Italy. Forests, 13(12), 1989. 13(12. https://doi.org/10.3390/f13121989
  • Grossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B., Siegwolf, R. T. W., Sperry, J. S., & McDowell, N. G. (2020). Plant responses to rising vapor pressure deficit. New Phytologist, 226(6), 1550–1566. https://doi.org/10.1111/nph.16485
  • Grünig, M., Seidl, R., & Senf, C. (2023). Increasing aridity causes larger and more severe forest fires across Europe. Global Change Biology, 29(6), 1648–1659. https://doi.org/10.1111/gcb.16547
  • Gutsch, Lasch-Born, P., Kollas, C., Suckow, F., & Reyer, C. P. O. (2018). Balancing trade-offs between ecosystem services in Germany’s forests under climate change. Environmental Research Letters, 13(4), 045012. https://doi.org/10.1088/1748-9326/aab4e5
  • Hanson, P. J., Amthor, J. S., Wullschleger, S. D., Wilson, K. B., Grant, R. F., Hartley, A., Hui, D., Hunt Jr, E. R., Johnson, D. W., Kimball, J. S., King, A. W., Luo, Y., McNulty, S. G., Sun, G., Thornton, P. E., Wang, S., Williams, M., Baldocchi, D. D., & Cushman, R. M. (2004). Oak forest carbon and water simulations: Model intercomparisons and evaluations against independent data. Ecological Monographs, 74(3), 443–489. https://doi.org/10.1890/03-4049
  • Herrera, S., Margarida Cardoso, R., Matos Soares, P., Espírito-Santo, F., Viterbo, P., & Gutiérrez, J. M. (2019). Iberia01: A new gridded dataset of daily precipitation and temperatures over Iberia. Earth System Science Data, 11(4), 1947–1956. https://doi.org/10.5194/essd-11-1947-2019
  • Hiederer, R. (2013). Mapping soil properties for Europe - spatial representation of soil database attributes. JRC, Technical Reports. https://publications.jrc.ec.europa.eu/repository/handle/JRC83425
  • Hijmans, R. J., Bivand, R., Forner, K., Ooms, J., Pebesma, E., & Sumner, M. D. (2022). Package ‘terra’. Vienna, Austria.
  • Janssen, P. H. M., & Heuberger, P. S. C. (1995). Calibration of process-oriented models. Ecological Modelling, 83(1–2), 55–66. https://doi.org/10.1016/0304-3800(95)00084-9
  • Jung, M., Koirala, S., Weber, U., Ichii, K., Gans, F., Camps-Valls, G., Papale, D., Schwalm, C., Tramontana, G., & Reichstein, M. (2019). The FLUXCOM ensemble of global land-atmosphere energy fluxes. Scientific Data, 6(1), 1–14. https://doi.org/10.1038/s41597-019-0076-8
  • Jung, M., Schwalm, C., Migliavacca, M., Walther, S., Camps-Valls, G., Koirala, S., Anthoni, P., Besnard, S., Bodesheim, P., Carvalhais, N., Chevallier, F., Gans, F., Goll, S., Haverd, D., Köhler, V., Ichii, P., Jain, K., Liu, A., Lombardozzi, J., & Reichstein, M. (2020). Scaling carbon fluxes from eddy covariance sites to globe: Synthesis and evaluation of the FLUXCOM approach. Biogeosciences, 17(5), 1343–1365. https://doi.org/10.5194/bg-17-1343-2020
  • Kannenberg, S. A., Schwalm, C. R., Anderegg, W. R. L., & Rejmanek, M. (2020). Ghosts of the past: How drought legacy effects shape forest functioning and carbon cycling. Ecology Letters, 23(5), 891–901. https://doi.org/10.1111/ele.13485
  • Kattge, J., & Knorr, W. (2007). Temperature acclimation in a biochemical model of photosynthesis: A reanalysis of data from 36 species. Plant, Cell and Environment, 30(9), 1176–1190. https://doi.org/10.1111/j.1365-3040.2007.01690.x
  • Keenan, T., Baker, I., Barr, A., Ciais, P., Davis, K., Dietze, M., Dragoni, D., Gough, C. M., Grant, R., Hollinger, D., Hufkens, K., Poulter, B., McCaughey, H., Raczka, B., Ryu, Y., Schaefer, K., Tian, H., Verbeeck, H., Zhao, M., & Richardson, A. D. (2012). Terrestrial biosphere model performance for inter-annual variability of land-atmosphere CO 2 exchange. Global Change Biology, 18(6), 1971–1987. https://doi.org/10.1111/j.1365-2486.2012.02678.x
  • Keenan, T., García, R., Friend, A. D., Zaehle, S., Gracia, C., & Sabate, S. (2009). Improved understanding of drought controls on seasonal variation in Mediterranean forest canopy CO2 and water fluxes through combined in situ measurements and ecosystem modelling. Biogeosciences, 6(8), 1423–1444. https://doi.org/10.5194/bg-6-1423-2009
  • Koch, J., Demirel, M. C., & Stisen, S. (2018). The SPAtial EFficiency metric (SPAEF): Multiple-component evaluation of spatial patterns for optimization of hydrological models. Geoscientific Model Development, 11(5), 1873–1886. https://doi.org/10.5194/gmd-11-1873-2018
  • Kollet, S. J., & Maxwell, R. M. (2008). Capturing the influence of groundwater dynamics on land surface processes using an integrated, distributed watershed model. Water Resources Research, 44(2), 1–18. https://doi.org/10.1029/2007WR006004
  • Kumar, S. V., Peters-Lidard, C. D., Mocko, D., Reichle, R., Liu, Y., Arsenault, K. R., Xia, Y., Ek, M., Riggs, G., Livneh, B., & Cosh, M. (2014). Assimilation of remotely sensed soil moisture and snow depth retrievals for drought estimation. Journal of Hydrometeorology, 15(6), 2446–2469. https://doi.org/10.1175/JHM-D-13-0132.1
  • Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R News, 2(3), 18–22.
  • Lindeskog, M., Smith, B., Lagergren, F., Sycheva, E., Ficko, A., Pretzsch, H., & Rammig, A. (2021). Accounting for forest management in the estimation of forest carbon balance using the dynamic vegetation model LPJ-GUESS (v4.0, r9710): Implementation and evaluation of simulations for Europe. Geoscientific Model Development, 14(10), 6071–6112. https://doi.org/10.5194/gmd-14-6071-2021
  • Li, X., & Xiao, J. (2019a). A global, 0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2, MODIS, and reanalysis data. Remote Sensing, 11(5), 2563. https://doi.org/10.3390/rs11050517
  • Li, X., & Xiao, J. (2019b). Mapping photosynthesis solely from solar-induced chlorophyll fluorescence: A global, fine-resolution dataset of gross primary production derived from OCO-2. Remote Sensing, 11(21), 2563. Remote Sensing, 11(21. https://doi.org/10.3390/rs11212563
  • Li, X., Xiao, J., He, B., Altaf Arain, M., Beringer, J., Desai, A. R., Emmel, C., Hollinger, D. Y., Krasnova, A., Mammarella, I., Noe, S. M., Ortiz, P. S., Rey-Sanchez, A. C., Rocha, A. V., & Varlagin, A. (2018). Solar-induced chlorophyll fluorescence is strongly correlated with terrestrial photosynthesis for a wide variety of biomes: First global analysis based on OCO-2 and flux tower observations. Global Change Biology, 24(9), 3990–4008. https://doi.org/10.1111/gcb.14297
  • Lorenz, R., Stalhandske, Z., & Fischer, E. M. (2019). Detection of a climate Change Signal in extreme heat, heat stress, and cold in Europe from observations. Geophysical Research Letters, 46(14), 8363–8374. https://doi.org/10.1029/2019GL082062
  • Mahnken, M., Cailleret, M., Collalti, A., Trotta, C., Biondo, C., D’Andrea, E., Dalmonech, D., Marano, G., Mäkelä, A., Minunno, F., Peltoniemi, M., Trotsiuk, V., Nadal-Sala, D., Sabaté, S., Vallet, P., Aussenac, R., Cameron, D. R., Bohn, F. J., Grote, R., and Reyer, C. P. O. (2022). Accuracy, realism and general applicability of European forest models. Global Change Biology, 28(23), 6921–6943. https://doi.org/10.1111/gcb.16384
  • Marchand, W., Buechling, A., Rydval, M., Čada, V., Stegehuis, A. I., Fruleux, A., Poláček, M., Hofmeister, J., Pavlin, J., Ralhan, D., Dušátko, M., Janda, P., Mikoláš, M., Vostarek, O., Bače, R., Frankovič, M., Kozák, D., Roibu, C. C., Chaskovskyy, O. … Svoboda, M. (2023). Accelerated growth rates of Norway spruce and European beech saplings from Europe’s temperate primary forests are related to warmer conditions. Agricultural and Forest Meteorology 329, 109280. March 2022. https://doi.org/10.1016/j.agrformet.2022.109280
  • Marconi, S., Chiti, T., Nolè, A., Valentini, R., & Collalti, A. (2017). The role of respiration in estimation of net carbon cycle: Coupling soil carbon dynamics and canopy turnover in a novel version of 3D-CMCC forest ecosystem model. Forests, 8(6), 220. https://doi.org/10.3390/f8060220
  • Maréchaux, I., Langerwisch, F., Huth, A., Bugmann, H., Morin, X., Reyer, C. P. O., Seidl, R., Collalti, A., Dantas de Paula, M., Fischer, R., Gutsch, M., Lexer, M. J., Lischke, H., Rammig, A., Rödig, E., Sakschewski, B., Taubert, F., Thonicke, K., Vacchiano, G., & Bohn, F. J. (2021). Tackling unresolved questions in forest ecology: The past and future role of simulation models. Ecology and Evolution, 11(9), 3746–3770. https://doi.org/10.1002/ece3.7391
  • Maselli, F., Barbati, A., Chiesi, M., Chirici, G., & Corona, P. (2006). Use of remotely sensed and ancillary data for estimating forest gross primary productivity in Italy. Remote Sensing of Environment, 100(4), 563–575. https://doi.org/10.1016/j.rse.2005.11.010
  • Maselli, F., Pasqui, M., Chirici, G., Chiesi, M., Fibbi, L., Salvati, R., & Corona, P. (2012). Modeling primary production using a 1 km daily meteorological data set. Climate Research, 54(3), 271–285. https://doi.org/10.3354/cr01121
  • Maselli, P., Puletti, D., Chirici G, N., & Corona, P. (2009). Combining remote sensing and ancillary data to monitor the gross productivity of water-limited forest ecosystems. Remote Sensing of Environment, 113(3), 657–667. https://doi.org/10.1016/j.rse.2008.11.008
  • Massari, C., Brocca, L., Pellarin, T., Abramowitz, G., Filippucci, P., Ciabatta, L., Maggioni, V., Kerr, Y., & Fernandez Prieto, D. (2020). A daily 25 km short-latency rainfall product for data-scarce regions based on the integration of the global precipitation measurement mission rainfall and multiple-satellite soil moisture products. Hydrology and Earth System Sciences, 24(5), 2687–2710. https://doi.org/10.5194/hess-24-2687-2020
  • Massoud, E. C., Xu, C., Fisher, R. A., Knox, R. G., Walker, A. P., Serbin, S. P., Christoffersen, B. O., Holm, J. A., Kueppers, L. M., Ricciuto, D. M., Wei, L., Johnson, D. J., Chambers, J.Q., Koven, C. D., McDowell, N. G., & Vrugt, J. A. (2019). Identification of key parameters controlling demographically structured vegetation dynamics in a land surface model: CLM4.5(FATES). Geoscientific Model Development, 12, 4133–4164. https://doi.org/10.5194/gmd-12-4133-2019
  • Médail, F., Monnet, A. C., Pavon, D., Nikolic, T., Dimopoulos, P., Bacchetta, G., Arroyo, J., Barina, Z., Albassatneh, M. C., Domina, G., Fady, B., Matevski, V., Mifsud, S., & Leriche, A. (2019). What is a tree in the Mediterranean basin hotspot? A critical analysis. Forest Ecosystems, 6(1). https://doi.org/10.1186/s40663-019-0170-6
  • Merganičová, K., Merganič, J., Lehtonen, A., Vacchiano, G., Sever, M. Z. O., Augustynczik, A. L. D., Grote, R., Kyselová, I., Mäkelä, A., Yousefpour, R., Krejza, J., Collalti, A., Reyer, C. P. O., & Polle, A. (2019). Forest carbon allocation modelling under climate change. Tree Physiology, 39(12), 1937–1960. https://doi.org/10.1093/treephys/tpz105
  • Minunno, F., Peltoniemi, M., Härkönen, S., Kalliokoski, T., Makinen, H., & Mäkelä, A. (2019). Bayesian calibration of a carbon balance model PREBAS using data from permanent growth experiments and national forest inventory. Forest Ecology and Management, 440(March), 208–257. https://doi.org/10.1016/j.foreco.2019.02.041
  • Moreno, A., & Hasenauer, H. (2016). Spatial downscaling of European climate data. International Journal of Climatology, 36(3), 1444–1458. https://doi.org/10.1002/joc.4436
  • Niu, G. Y., Yang, Z. L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Kumar, A., Manning, K., Niyogi, D., Rosero, E., Tewari, M., & Xia, Y. (2011). The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. Journal of Geophysical Research Atmospheres, 116(12), 1–19. https://doi.org/10.1029/2010JD015139
  • Noce, S., Collalti, A., Valentini, R., & Santini, M. (2016). Hot spot maps of forest presence in the Mediterranean basin. IForest - Biogeosciences & Forestry, 9(5), 766–774. https://doi.org/10.3832/ifor1802-009
  • Nord-Larsen, T., & Schumacher, J. (2012). Estimation of forest resources from a country wide laser scanning survey and national forest inventory data. Remote Sensing of Environment, 119, 148–157. https://doi.org/10.1016/j.rse.2011.12.022
  • Norton, A. J., Rayner, P. J., Koffi, E. N., Scholze, M., Silver, J. D., & Wang, Y. P. (2019). Estimating global gross primary productivity using chlorophyll fluorescence and a data assimilation system with the BETHY-SCOPE model. Biogeosciences, 16(15), 3069–3093. https://doi.org/10.5194/bg-16-3069-2019
  • O’Sullivan, M., Smith, W. K., Sitch, S., Friedlingstein, P., Arora, V. K., Haverd, V., Jain, A. K., Kato, E., Kautz, M., Lombardozzi, D., Nabel, J. E. M. S., Tian, H., Vuichard, N., Wiltshire, A., Zhu, D., & Buermann, W. (2020). Climate-driven variability and trends in plant productivity over recent decades based on three global products. Global Biogeochemical Cycles, 34(12). https://doi.org/10.1029/2020GB006613
  • Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, Y. W., Poindexter, C., Chen, J., Elbashandy, A., Humphrey, M., Isaac, P., Polidori, D., Ribeca, A., van Ingen, C., Zhang, L., Amiro, B., Ammann, C., Arain, M. A., Ardö, J. & Papale, D. (2020). The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Scientific Data, 7(1), 225. https://doi.org/10.1038/s41597-020-0534-3
  • Patacca, M., Lindner, M., Lucas-Borja, M. E., Cordonnier, T., Fidej, G., Gardiner, B., Hauf, Y., Jasinevičius, G., Labonne, S., Linkevičius, E., Mahnken, M., Milanovic, S., Nabuurs, G. J., Nagel, T. A., Nikinmaa, L., Panyatov, M., Bercak, R., Seidl, R., Ostrogović Sever, M. Z. & Schelhaas, M. J. (2023). Significant increase in natural disturbance impacts on European forests since 1950. Global Change Biology, 29(5), 1359–1376. https://doi.org/10.1111/gcb.16531
  • Peano, D., Hemming, D., Materia, S., Delire, C., Fan, Y., Joetzjer, E., Lee, H., Nabel, J. E. M. S., Park, T., Peylin, P., Wårlind, D., Wiltshire, A., & Zaehle, S. (2021). Plant phenology evaluation of CRESCENDO land surface models – part 1: Start and end of the growing season. Biogeosciences, 18(7), 2405–2428. https://doi.org/10.5194/bg-18-2405-2021
  • Peano, D., Materia, S., Collalti, A., Alessandri, A., Anav, A., Bombelli, A., & Gualdi, S. (2019). Global variability of simulated and observed vegetation growing season. Journal of Geophysical Research: Biogeosciences, 124(11), 3569–3587. https://doi.org/10.1029/2018JG004881
  • Peaucelle, M., Janssens, I. A., Stocker, B. D., Descals Ferrando, A., Fu, Y. H., Molowny-Horas, R., Ciais, P., & Peñuelas, J. (2019). Spatial variance of spring phenology in temperate deciduous forests is constrained by background climatic conditions. Nature Communications, 10(1), 1–10. https://doi.org/10.1038/s41467-019-13365-1
  • Peñuelas, J., Sardans, J., Filella, I., Estiarte, M., Llusià, J., Ogaya, R., Carnicer, J., Bartrons, M., Rivas-Ubach, A., Grau, O., Peguero, G., Margalef, O., Pla-Rabés, S., Stefanescu, C., Asensio, D., Preece, C., Liu, L., Verger, A., Barbeta, A. & Terradas, J. (2017). Impacts of global change on Mediterranean forests and their services. Forests, 8(12), 1–37. https://doi.org/10.3390/f8120463
  • Pretzsch, H., Grote, R., Reineking, B., Rötzer, T., & Seifert, S. (2008). Models for forest ecosystem management: A European perspective. Annals of Botany, 101(8), 1065–1087. https://doi.org/10.1093/aob/mcm246
  • Qiu, R., Han, G., Ma, X., Xu, H., Shi, T., & Zhang, M. (2020). A comparison of OCO-2 SIF, MODIS GPP, and GOSIF data from gross primary production (GPP) estimation and seasonal cycles in North America. Remote Sensing, 12(2), 258. https://doi.org/10.3390/rs12020258
  • R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
  • Reyer. (2015). Forest productivity under environmental change—A review of stand-scale modeling studies. Current Forestry Reports, 1(2), 53–68. https://doi.org/10.1007/s40725-015-0009-5
  • Reyer, C. P. O., Gonzalez, S., Dolos, R., Hartig, K., Hauf, F., Noack, Y., Lasch-Born, M., Rötzer, P., Pretzsch, T., Meesenburg, H., Fleck, H., Wagner, S., Bolte, M., Sanders, A., Kolari, T. G. M., Mäkelä, P., Vesala, A., Mammarella, T., Pumpanen, I. G., & Frieler, K. (2020). The PROFOUND database for evaluating vegetation models and simulating climate impacts on European forests. Earth System Science Data, 12(2), 1295–1320. https://doi.org/10.5194/essd-12-1295-2020
  • Reyer, C., Lasch-Born, P., Suckow, F., Gutsch, M., Murawski, A., & Pilz, T. (2014). Projections of regional changes in forest net primary productivity for different tree species in Europe driven by climate change and carbon dioxide. Annals of Forest Science, 71(2), 211–225. https://doi.org/10.1007/s13595-013-0306-8
  • Richards, F. J. (1959). A flexible growth function for empirical use. Journal of Experimental Botany, 10(2), 290–301. https://doi.org/10.1093/jxb/10.2.290
  • Ripullone, F., Camarero, J. J., Colangelo, M., Voltas, J., & Cernusak, L. (2020). Variation in the access to deep soil water pools explains tree-to-tree differences in drought-triggered dieback of Mediterranean oaks. Tree Physiology, 40(5), 591–604. https://doi.org/10.1093/treephys/tpaa026
  • Rita, A., Camarero, J. J., Nolè, A., Borghetti, M., Brunetti, M., Pergola, N., Serio, C., Vicente-Serrano, S. M., Tramutoli, V., & Ripullone, F. (2020). The impact of drought spells on forests depends on site conditions: The case of 2017 summer heat wave in southern Europe. Global Change Biology, 26(2), 851–863. https://doi.org/10.1111/gcb.14825
  • Rojas, R., Feyen, L., Dosio, A., & Bavera, D. (2011). Improving pan-European hydrological simulation of extreme events through statistical bias correction of RCM-driven climate simulations. Hydrology and Earth System Sciences, 15(8), 2599–2620. https://doi.org/10.5194/hess-15-2599-2011
  • Sanchez-Ruiz, S., Chiesi, M., Fibbi, L., Carrara, A., Maselli, F., & Gilabert, M. A. (2018). Optimized application of biome-BGC for modeling the daily GPP of natural vegetation over Peninsular Spain. Journal of Geophysical Research: Biogeosciences, 123(2), 531–546. https://doi.org/10.1002/2017JG004360
  • Schenk, H. J., & Jackson, R. B. (2005). Mapping the global distribution of deep roots in relation to climate and soil characteristics. Geoderma, 126(1–2), 129–140. 1-2 SPEC. ISS. https://doi.org/10.1016/j.geoderma.2004.11.018
  • Schuldt, B., Buras, A., Arend, M., Vitasse, Y., Beierkuhnlein, C., Damm, A., Gharun, M., Grams, T. E. E., Hauck, M., Hajek, P., Hartmann, H., Hiltbrunner, E., Hoch, G., Holloway-Phillips, M., Körner, C., Larysch, E., Lübbe, T., Nelson, D. B., Rammig, A. & Kahmen, A. (2020). A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic and Applied Ecology, 45, 86–103. https://doi.org/10.1016/j.baae.2020.04.003
  • Senf, C., Buras, A., Zang, C. S., Rammig, A., & Seidl, R. (2020). Excess forest mortality is consistently linked to drought across Europe. Nature Communications, 11(1), 1–8. https://doi.org/10.1038/s41467-020-19924-1
  • Sitch, S. (2015). Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences, 12(3), 653–679. https://doi.org/10.5194/bg-12-653-201510.5194/bg-12-653-2015-supplement
  • Stocker, B. D., Tumber-Dávila, S. J., Konings, A. G., Anderson, M. C., Hain, C., & Jackson, R. B. (2023). Global patterns of water storage in the rooting zones of vegetation. Nature Geoscience, 16(3), 250–256. https://doi.org/10.1038/s41561-023-01125-2
  • Suárez-Muñoz, M., Bonet-García, F. J., Navarro-Cerrillo, R., Herrero, J., & Mina, M. (2023). Forest management scenarios drive future dynamics of Mediterranean planted pine forests under climate change. Landscape Ecology, 38(8), 2069–2084. https://doi.org/10.1007/s10980-023-01678-y
  • Sun, Y., Frankenberg, C., Wood, J. D., Schimel, D. S., Jung, M., Guanter, L., Drewry, D. T., Verma, M., Porcar-Castell, A., Griffis, T. J., Gu, L., Magney, T. S., Köhler, P., Evans, B., & Yuen, K. (2017). OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science, 358(6360). https://doi.org/10.1126/science.aam5747
  • Sun, Z., Wang, W., Zhag, X., Tai, H., Guo, H., Yin, S., & Zhag, T. (2019). A recent large review on RS-based products intercomparison confirmed the large variability and different sensitivity to climatic factors between different approaches and criteria when compared at site-level. Science of the Total Environment, 668, 696–713. https://doi.org/10.1016/j.scitotenv.2019.03.025
  • Tarquini, T., Isola, I., Favalli, M., Mazzarini, F., Bisson, M., Pareschi, M. T., & Boschi, E. (2009). TINITALY/01: A new triangular irregular network of Italy. Annals of Geophysics, 50(3), 50(3. https://doi.org/10.4401/ag-4424
  • Tedeschi, V., Rey, A., Manca, G., Valentini, R., Jarvis, P. J., & Borghetti, M. (2006). Soil respiration in a Mediterranean oak forest at different developmental stages after coppicing. Global Change Biology, 12(1), 110–121. https://doi.org/10.1111/j.1365-2486.2005.01081.x
  • Testolin, R., Dalmonech, D., Marano, G., Bagnara, M., D’Andrea, E., Matteucci, G., Noce, S., & Collalti, A. (2023). Simulating diverse forest management options in a changing climate on a Pinus nigra subsp. laricio plantation in Southern Italy. Science of the Total Environment, 857(October 2022), 159361. https://doi.org/10.1016/j.scitotenv.2022.159361
  • Vacchiano, G., Magnani, F., & Collalti, A. (2012). Modeling Italian forests: State of the art and future challenges. IForest - Biogeosciences & Forestry, 5(1), 113–120. https://doi.org/10.3832/ifor0614-005
  • Vangi, E., D’Amico, G., Francini, S., Borghi, C., Giannetti, F., Corona, P., Marchetti, M., Travaglini, D., Pellis, G., Vitullo, M., & Chirici, G. (2023). LARGE-SCALE high-resolution yearly modeling of forest growing stock volume and above-ground carbon pool. Environmental Modelling and Software, 159, 105580. https://doi.org/10.1016/j.envsoft.2022.105580
  • Vangi, E., D’amico, G., Francini, S., Giannetti, F., Lasserre, B., Marchetti, M., McRoberts, R. E., & Chirici, G. (2021). The effect of forest mask quality in the wall–to–wall estimation of growing stock volume. Remote Sensing, 13(5), 1–20. https://doi.org/10.3390/rs13051038
  • Verkerk, P. J., Delacote, P., Hurmekoski, E., Kunttu, J., Matthews, R., Mäkipää, R., Mosley, F., Perugini, L., Reyer, C. P. O., Roe, S., & Trømborg, E. (2022). Forest-based climate change mitigation and adaptation in Europe.
  • Veroustraete, F., Sabbe, H., & Eerens, H. (2002). Estimation of carbon mass fluxes over Europe using the C-Fix model and euroflux data. Remote Sensing of Environment, 83(3), 376–399. https://doi.org/10.1016/S0034-4257(02)00043-3
  • Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23(7), 1696–1718. https://doi.org/10.1175/2009JCLI2909.1
  • Vogel, J., Paton, E., Aich, V., & Bronstert, A. (2021). Increasing compound warm spells and droughts in the Mediterranean Basin. Weather and Climate Extremes, 32, 100312. https://doi.org/10.1016/j.wace.2021.100312
  • Walther, S., Duveiller, G., Jung, M., Guanter, L., Cescatti, A., & Camps-Valls, G. (2019). Satellite observations of the contrasting response of trees and grasses to variations in water availability. Geophysical Research Letters, 46(3), 1429–1440. https://doi.org/10.1029/2018GL080535
  • Wang, S., Zhang, Y., Ju, W., Qiu, B., & Zhang, Z. (2021). Tracking the seasonal and inter-annual variations of global gross primary production during last four decades using satellite near-infrared reflectance data. Science of the Total Environment, 755, 755. https://doi.org/10.1016/j.scitotenv.2020.142569
  • Waser, L. T., Ginzler, C., & Rehush, N. (2017). Wall-to-wall tree type mapping from countrywide airborne remote sensing surveys. Remote Sensing, 9(8), 766. https://doi.org/10.3390/rs9080766
  • Wild, B., Teubner, I., Moesinger, L., Zotta, R., Forkel, M., van der Schalie, R., Sitch, S., & Dorigo, W. (2022). VODCA2GPP – a new, global, long-term (1988–2020) gross primary production dataset from microwave remote sensing. Earth System Science Data, 14(3), 1063–1085. https://doi.org/10.5194/essd-14-1063-2022
  • Wohlfahrt, G., Gerdel, K., Migliavacca, M., Rotenberg, E., Tatarinov, F., Müller, J., Hammerle, A., Julitta, T., Spielmann, F. M., & Yakir, D. (2018). Sun-induced fluorescence and gross primary productivity during a heat wave. Scientific Reports, 8(1), 1–9. https://doi.org/10.1038/s41598-018-32602-z
  • Wu, Z., Ahlström, A., Smith, B., Ardö, J., Eklundh, L., Fensholt, R., & Lehsten, V. (2017). Climate data induced uncertainty in model-based estimations of terrestrial primary productivity. Environmental Research Letters, 12(6), 064013. https://doi.org/10.1088/1748-9326/aa6fd8
  • Xiao, J., Li, X., He, B., Arain, M. A., Beringer, J., Desai, A. R., Emmel, C., Hollinger, D. Y., Krasnova, A., Mammarella, I., Noe, S. M., Serrano Ortiz, P., Rey-Sanchez, C., Rocha, A. V., & Varlagin, A. (2019). Solar-induced chlorophyll fluorescence exhibits a universal relationship with gross primary productivity across a wide variety of biomes. Global Change Biology, 25(4), e4–e6. https://doi.org/10.1111/gcb.14565
  • Yang, R., Wang, J., Zeng, N., Sitch, S., Tang, W., McGrath, M. J., Cai, Q., Liu, D., Lombardozzi, D., Tian, H., Jain, A. K., & Han, P.(2022). Divergent historical GPP trends among state-of-the-art multi-model simulations and satellite-based products. Earth Syst. Dynam, 13(2), 833–849. https://doi.org/10.5194/esd-13-833-202210.5194/esd-13-833-2022-supplement
  • Zampieri, M., Grizzetti, B., Toreti, A., De Palma, P., & Collalti, A. (2021). Rise and fall of vegetation annual primary production resilience to climate variability projected by a large ensemble of earth system models’ simulations. Environmental Research Letters, 16(10), 105001. https://doi.org/10.1088/1748-9326/ac2407
  • Zhang, F., Lu, X., Huang, Q., & Jiang, F. (2022). Impact of different ERA reanalysis data on GPP simulation. Ecological Informatics, 68(August 2021), 101520. https://doi.org/10.1016/j.ecoinf.2021.101520
  • Zhang, Y., & Ye, A. (2021). Would the obtainable gross primary productivity (GPP) products stand up? A critical assessment of 45 global GPP products. Science of the Total Environment, 783, 146965. https://doi.org/10.1016/j.scitotenv.2021.146965
  • Zhang, Y., & Ye, A. (2022). Uncertainty analysis of multiple terrestrial gross primary productivity products. Global Ecology and Biogeography, 31(11), 2204–2218. https://doi.org/10.1111/geb.13578
  • Zhao, W., & Zhu, Z. (2022). Exploring the Best-Matching Plant Traits and Environmental Factors for Vegetation Indices in estimates of global gross primary productivity. Remote Sensing, 14(24), 6316. https://doi.org/10.3390/rs14246316
  • Zheng, Y., Shen, R., Wang, Y., Li, X., Liu, S., Liang, S., Chen, J. M., & Ju, W., Zhang, L., & Yuan, W. (2020). Improved estimate of global gross primary production for reproducing its long-term variation, 1982–2017. Earth System Science Data, 12(4), 2725–2746. https://doi.org/10.5194/essd-12-2725-2020