570
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Validation of photosynthetically active radiation by OLCI on Sentinel-3 against ground-based measurements in the central Mediterranean and possible aerosol effects

ORCID Icon, , , , , , & ORCID Icon show all
Article: 2307617 | Received 29 May 2023, Accepted 15 Jan 2024, Published online: 30 Jan 2024

References

  • Augustine, J. A., DeLuisi, J. J., & Long, C. N. (2000). SURFRAD–A National Surface Radiation Budget Network for Atmospheric Research. Bulletin of the American Meteorological Society, 81, 2341–18. https://doi.org/10.1175/1520-0477(2000)081%3C2341:SANSRB%3E2.3.CO;2
  • Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., … Wofsy, S. (2001). FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities. Bulletin of the American Meteorological Society, 82(11), 2415–2434. https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2
  • Ballabrera-Poy, J., Murtugudde, R., Zhang, R.-H., & Busalacchi, A. J. (2007). Coupled ocean–atmosphere response to seasonal modulation of ocean color: Impact on interannual climate simulations in the Tropical Pacific. Journal of Climate, 20(2), 353–374. https://doi.org/10.1175/JCLI3958.1
  • Barreto, Á., Cuevas, E., Granados-Muñoz, M.-J., Alados-Arboledas, L., Romero, P. M., Gröbner, J., Kouremeti, N., Almansa, A. F., Stone, T., Toledano, C., Román, R., Sorokin, M., Holben, B., Canini, M., & Yela, M. (2016). The new sun-sky-lunar cimel CE318-T multiband photometer – a comprehensive performance evaluation. Atmospheric Meaurement Techniques, 9(2), 631–654. https://doi.org/10.5194/amt-9-631-2016
  • Becagli, S., Sferlazzo, D. M., Pace, G., diSarra, A., Bommarito, C., Calzolai, G., Ghedini, C., Lucarelli, F., Meloni, D., Monteleone, F., Severi, M., Traversi, R., & Udisti, R. (2012). Evidence for heavy fuel oil combustion aerosols from chemical analyses at the island of Lampedusa: A possible large role of ships emissions in the mediterranean. Atmospheric Chemistry and Physics, 12(7), 3479–3492. https://doi.org/10.5194/acp-12-3479-2012
  • Behrenfeld, M. J., & Falkowski, P. G. (1997). RA consumer’s guide to phytoplankton primary productivity models. Limnology and Oceanography, 42(7), 1479–1491. https://doi.org/10.4319/lo.1997.42.7.1479
  • Berk, A., Conforti, P., Kennett, R., Perkins, T., Hawes, F., & van den Bosch, J. (2014). MODTRAN6: A major upgrade of the MODTRAN radiative transfer code. Proceedings of SPIE, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XX, 90880H. https://doi.org/10.1117/12.2050433
  • Bigelow, D. S., Slusser, J. R., Beaubien, A. F., & Gibson, J. H. (1998). The USDA ultraviolet radiation monitoring program. Bulletin of the American Meteorological Society, 79(4), 601–616. https://doi.org/10.1175/1520-0477(1998)079<0601:TUURMP>2.0.CO;2
  • Calzolai, G., Nava, S., Lucarelli, F., Chiari, M., Giannoni, M., Becagli, S., Traversi, R., Marconi, M., Frosini, D., Severi, M., Udisti, R., diSarra, A., Pace, G., Meloni, D., Bommarito, C., Monteleone, F., Anello, F., & Sferlazzo, D. M. (2015). Characterization of PM 10 sources in the central mediterranean. Atmospheric Chemistry and Physics, 15(24), 13939–13955. https://doi.org/10.5194/acp-15-13939-2015
  • Carrara, A., Kolari, P., Op de Beeck, M., Arriga, N., Berveiller, D., Dengel, S., Ibrom, A., Merbold, L., Rebmann, C., Sabbatini, S., Serrano-Ortíz, P., & Biraud, S. C. (2018). Radiation measurements at ICOS ecosystem stations. International Agrophysics, 32(4), 589–605. https://doi.org/10.1515/intag-2017-0049
  • DiIorio, T., A di Sarra, A., Sferlazzo, D. M., Cacciani, M., Meloni, D., Monteleone, F., Fuà, D., & Fiocco, G. (2009). Seasonal evolution of the tropospheric aerosol vertical profile in the central mediterranean and role of desert dust. Journal of Geophysical Research: Atmospheres, 114(D2). https://doi.org/10.1029/2008JD010593
  • diSarra, A., Bommarito, C., Anello, F., DiIorio, T., Meloni, D., Monteleone, F., Pace, G., Piacentino, S., & Sferlazzo, D. (2019). Assessing the quality of shortwave and longwave radiation observations over the ocean: One year of high time resolution measurements at the lampedusa oceanographic observatory. Journal of Atmospheric and Oceanic Technology, 36(12), 2383–2400. https://doi.org/10.1175/JTECH-D-19-0018.1
  • diSarra, A., DiBiagio, C., Meloni, D., Monteleone, F., Pace, G., Pugnaghi, S., & Sferlazzo, D. (2011). Shortwave and longwave radiative effects of the intense saharan dust event of 25–26 March, 2010, at lampedusa (Mediterranean sea). Journal of Geophysical Research: Atmospheres, 116(D23), D23209. https://doi.org/10.1029/2011JD016238
  • diSarra, A., Pace, G., Meloni, D., De Silvestri, L., Piacentino, S., & Monteleone, F. (2008). Surface shortwave radiative forcing of different aerosol types in the central mediterranean. Geophysical Research Letters, 35(2), L02714. https://doi.org/10.1029/2007GL032395
  • diSarra, A., Sferlazzo, D., Meloni, D., Anello, F., Bommarito, C., Corradini, S., De Silvestri, L., DiIorio, T., Monteleone, F., Pace, G., Piacentino, S., & Pugnaghi, S. (2015). Empirical correction of multifilter rotating shadowband radiometer (MFRSR) aerosol optical depths for the aerosol forward scattering and development of a long-term integrated MFRSR-Cimel dataset at Lampedusa. Applied Optics, 54(10), 2725–2737. https://doi.org/10.1364/AO.54.002725
  • Donlon, C., Berruti, B., Buongiorno, A., Ferreira, M.-H., Féménias, P., Frerick, J., Goryl, P., Klein, U., Laur, H., Mavrocordatos, C., Nieke, J., Rebhan, H., Seitz, B., Stroede, J., & Sciarra, R. (2012). The global monitoring for environment and security (GMES) sentinel-3 mission. Remote Sensing of Environment, 120, 37–57. https://doi.org/10.1016/j.rse.2011.07.024
  • Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W., Brovkin, V., Cadule, P., Doney, S., Eby, M., Fung, I., Bala, G., John, J., Jones, C., Joos, F., Kato, T., Kawamiya, M., Knorr, W., Lindsay, K., … Zeng, N. (2006). Climate–carbon cycle feedback analysis: Results from the C4MIP model intercomparison. Journal of Climate, 19(14), 3337–3353. https://doi.org/10.1175/JCLI3800.1
  • Friedrichs, M. A. M., Carr, M.-E., Barber, R. T., Scardi, M., Antoine, D., Armstrong, R. A., Asanuma, I., Behrenfeld, M. J., Buitenhuis, E. T., Chai, F., Christian, J. R., Ciotti, A. M., Doney, S. C., Dowell, M., Dunne, J., Gentili, B., Gregg, W., Hoepffner, N., … Winguth, A. (2009). Assessing the uncertainties of model estimates of primary productivity in the tropical Pacific Ocean. Journal of Marine Systems, 76(1–2), 113–133 . https://doi.org/10.1016/j.jmarsys.2008.05.010
  • Frouin, R., Franz, B., & Wang, M. (2003). Algorithm to estimate PAR from SeaWiFS data. Version 1.2 – documentation. National Aeronautics and Space Administration. https://oceancolor.gsfc.nasa.gov/atbd/par/seawifs_par_wfigs.pdf
  • Frouin, R., & Pinker, R. T. (1995). Estimating photosynthetically active radiation (PAR) at the Earth’s surface from satellite observations. Remote Sensing of Environment, 51(1), 98–107. https://doi.org/10.1016/0034-4257(94)00068-X
  • Frouin, R., Ramon, D., Boss, E., Jolivet, D., Compiègne, M., Tan, J., Bouman, H., Jackson, T., Franz, B., Platt, T., & Sathyendranath, S. (2018). Satellite radiation products for Ocean Biology and biogeochemistry: Needs, state-of-the-art, gaps, development priorities, and opportunities. Frontiers in Marine Science, 5. https://doi.org/10.3389/fmars.2018.00003
  • GCOS. (2011). Systematic observation requirements for satellite-based data products for climate—2011 update. WMO.
  • Ghayas, H., Radhakrishnan, S. R., Sehgal, V. K., & Singh, S. (2022). Measurement and comparison of photosynthetically active radiation by different methods at Delhi. Theoretical and Applied Climatology, 150(3–4), 1559–1571. https://doi.org/10.1007/s00704-022-04252-9
  • Gould, R. W., Jr., Ko, D. S., Ladner, S. D., Lawson, T. A., & MacDonald, C. P. (2019). Comparison of satellite, model, and in situ values of photosynthetically available radiation (PAR). Journal of Atmospheric and Oceanic Technology, 36(4), 535–555. https://doi.org/10.1175/JTECH-D-18-0096.1
  • Gregg, W. W., & Carder, K. L. (1990). A simple spectral solar irradiance model for cloudless marine atmospheres. Limnology and Oceanography, 35(8), 1657–1675. https://doi.org/10.4319/lo.1990.35.8.1657
  • Gregg, W. W., & Rousseaux, C. S. (2019). Global ocean primary production trends in the modern ocean color satellite record (1998–2015). Environmental Research Letters, 14(12), 124011. https://doi.org/10.1088/1748-9326/ab4667
  • Harmel, T., & Chami, M. (2016). Estimation of daily photosynthetically active radiation (PAR) in presence of low to high aerosol loads: Application to OLCI-like satellite data. Optics Express, 24(22), A1390–A1407. https://doi.org/10.1364/OE.24.0A1390
  • Harrison, L., Michalsky, J., & Berndt, J. (1994). Automated multifilter rotating shadow-band radiometer: An instrument for optical depth and radiation measurements. Applied Optics, 33(22), 5118–5125. https://doi.org/10.1364/AO.33.005118
  • Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, I., & Smirnov, A. (1998). AERONET—A Federated Instrument Network and data archive for aerosol characterization. Remote Sensing of Environment, 66(1), 1–16. https://doi.org/10.1016/S0034-4257(98)00031-5
  • Jin, Z., Charlock, T. P., Smith, W. L., Jr., & Rutledge, K. (2004). A parameterization of ocean surface albedo. Geophysical Research Letters: Oceans, 31(22), L22301. https://doi.org/10.1029/2004GL021180
  • Kiefer, D. A., & Mitchell, B. G. (1983). A simple, steady state description of phytoplankton growth based on absorption cross section and quantum efficiency. Limnology and Oceanography, 28, 770–776. https://doi.org/10.4319/lo.1983.28.4.0770
  • Kwiatkowski, L., Bopp, L., Aumont, O., Ciais, P., Cox, P., Laufkötter, C., Li Yand Séférian, Y., & Séférian, R. (2017). Emergent constraints on projections of declining primary production in the tropical oceans. Nature Climate Change, 7(5), 355–358. https://doi.org/10.1038/nclimate3265
  • Lavender, S., (2010). OLCI level 2 algorithm theoretical basis document, photosynthetically active Radiation, SENTINEL-3 optical products and algorithm definition, S3-L2-SD-03-C12-ARG-ATBD, 1–15, https://www.eumetsat.int/media/38637
  • Liang, S., Zheng, T., Liu, R., Fang, H., Tsay, S., & Running, S. (2006). Estimation of incident photosynthetically active radiation from moderate resolution imaging spectrometer data. Journal of Geophysical Research: Atmospheres, 111(D15), 1–15. https://doi.org/10.1029/2005JD006730
  • Liberti, G. L., D’Alimonte, D., diSarra, A., Mazeran, C., Voss, K., Yarbrough, M., Bozzano, R., Cavaleri, L., Colella, S., Cesarini, C., Kajiyama, T., Meloni, D., Pomaro, A., Volpe, G., Yang, C., Zagolski, F., & Santoleri, R. (2020). European radiometry buoy and infrastructure (EURYBIA): A contribution to the design of the European Copernicus infrastructure for Ocean colour system vicarious calibration. Remote Sensing, 12(7), 1178. https://doi.org/10.3390/rs12071178
  • Li, L., Xin, X., Zhang, H., Yu, J., Liu, Q., Yu, S., & Wen, J. (2015). A method for estimating hourly photosynthetically active radiation (PAR) in China by combining geostationary and polar-orbiting satellite data. Remote Sensensing of Environment, 165, 14–26. https://doi.org/10.1016/j.rse.2015.03.034
  • Long, C. N., & Ackerman, T. P. (2000). Identification of clear skies from broadband pyranometer measurements and calculation of downwelling shortwave cloud effects. Journal of Geophysical Research: Atmospheres, 105(D12), 15609–15626. https://doi.org/10.1029/2000JD900077
  • Marconi, M., Sferlazzo, D. M., Becagli, S., Bommarito, C., Calzolai, G., Chiari, M., diSarra, A., Ghedini, C., Gómez-Amo, J. L., Lucarelli, F., Meloni, D., Monteleone, F., Nava, S., Pace, G., Piacentino, S., Rugi, F., Severi, M., Traversi, R., & Udisti, R. (2014). Saharan dust aerosol over the central Mediterranean sea: PM10 chemical composition and concentration versus optical columnar measurements. Atmospheric Chemistry and Physics, 14(4), 2039–2054. https://doi.org/10.5194/acp-14-2039-2014
  • McCree, K. J. (1972). Test of current definitions of photosynthetically active radiation against leaf photosynthesis data. Agricultural Meteorolgy, 10, 443–453. https://doi.org/10.1016/0002-1571(72)90045-3
  • Meloni, D., diSarra, A., Biavati, G., DeLuisi, J. J., Monteleone, F., Pace, G., Piacentino, S., & Sferlazzo, D. M. (2007). Seasonal behaviour of Saharan dust events at the mediterranean island of Lampedusa in the period 1999–2005. Atmospheric Environment, 41(14), 3041–3056. https://doi.org/10.1016/j.atmosenv.2006.12.001
  • Meloni, D., diSarra, A., Brogniez, G., Denjean, C., De Silvestri, L., DiIorio, T., Formenti, P., Gómez-Amo, J. L., Gröbner, J., Kouremeti, N., Liuzzi, G., Mallet, M., Pace, G., & Sferlazzo, D. (2018). Determining the infrared radiative effects of saharan dust: A radiative transfer modelling study based on vertically resolved measurements at Lampedusa. Atmospheric Chemistry and Physics, 18(6), 4377–4401. https://doi.org/10.5194/acp-18-4377-2018
  • Meloni, D., diSarra, A., Pace, G., & Monteleone, F. (2006). Aerosol optical properties at Lampedusa (central mediterranean). 2. Determination of single scattering albedo at two wavelengths for different aerosol types. Atmospheric Chemistry and Physics, 6(3), 715–727. https://doi.org/10.5194/acp-6-715-2006
  • Meloni, D., Junkermann, W., diSarra, A., Cacciani, M., De Silvestri, L., DiIorio, T., Estellés, V., Gómez-Amo, J. L., Pace, G., & Sferlazzo, D. M. (2015). Altitude-resolved shortwave and longwave radiative effects of desert dust in the mediterranean during the GAMARF campaign: Indications of a net daily cooling in the dust layer. Journal of Geophysical Research: Atmospheres, 120(8), 3386–3407. https://doi.org/10.1002/2014JD022312
  • Mercado, L. M., Bellouin, N., Sitch, S., Boucher, O., Huntingford, C., Wild, P. M., & Cox, P. M. (2009). Impact of changes in diffuse radiation on the global land carbon sink. Nature, 458(7241), 1014–1017. https://doi.org/10.1038/nature07949
  • Miller, A. J., Alexander, M. A., Boer, G. J., Chai, F., Denman, K., Erickson, D. J., Frouin, R., Gabric, A. J., Laws, E. A., Lewis, M. R., Liu, Z., Murtugudde, R., Nakamoto, S., Neilson, D. J., Norris, J. R., Ohlmann, J. C., Perry, R. I., Schneider, N., Shell, K. M., & Timmermann, A. (2003). Potential feedbacks between Pacific Ocean ecosystems and interdecadal climate variations. Bulletin of the American Meteorological Society, 84(5), 617–634. https://doi.org/10.1175/BAMS-84-5-617
  • Nakamoto, S., Prasana Kumar, S., Oberhuber, J. M., Muneyama, K., & Frouin, R. (2000). Chlorophyll control of sea surface temperature in the Arabian sea in a mixed layer isopycnal general circulation model. Geophysical Research Letters, 27(6), 747–750. https://doi.org/10.1029/1999GL002371
  • Nakamoto, S., Prasanna Kumar, S., Oberhuber, J. M., Ishizaka, J., Muneyama, K., & Frouin, R. (2001). Response of the equatorial Pacific to chlorophyll pigments in a mixed layer isopycnal ocean general circulation model. Geophysical Research Letters, 28(10), 2021–2024. https://doi.org/10.1029/2000GL012494
  • Nunez, M., Cantin, N., Steinberg, C., van Dongen-Vogels, V., & Bainbridge, S. (2022). Correcting PAR data from photovoltaic quantum sensors on remote weather stations on the great barrier reef. Journal of Atmospheric and Oceanic Technology, 39(4), 425–448. https://doi.org/10.1175/JTECH-D-21-0095.1
  • Pace, G., diSarra, A., Meloni, D., Piacentino, S., & Chamard, P. (2006). Aerosol optical properties at lampedusa (Central Mediterranean). 1. Influence of transport and identification of different aerosol types. Atmospheric Chemistry and Physics, 6(3), 697–713. https://doi.org/10.5194/acp-6-697-2006
  • Pace, G., Meloni, D., & diSarra, A. (2005). Forest fire aerosol over the mediterranean basin during summer 2003. Journal of Geophysical Research Atmospheres, 110, D21202. https://doi.org/10.1029/2005JD00598
  • Ross, J., & Sulev, M. (2000). Sources of errors in measurements of PAR. Agricultural and Forest Meteorology, 100(2–3), 103–125. https://doi.org/10.1016/S0168-1923(99)00144-6
  • Saux Picart, S., Sathyendranath, S., Dowell, M., Moore, T., & Platt, T. (2014). Remote sensing of assimilation number for marine phytoplankton. Remote Sensing of Environment, 146, 87–96. https://doi.org/10.1016/j.rse.2013.10.032
  • Schmid, B., & Wehrli, C. (1995). Comparison of sun photometer calibration by use of the langley technique and the standard lamp. Applied Optics, 34(18), 4500–4512. https://doi.org/10.1364/AO.34.004500
  • Sellitto, P., Zanetel, C., diSarra, A., Salerno, G., Tapparo, A., Meloni, D., Pace, G., Caltabiano, T., Briole, P., & Legras, B. (2017). The impact of mount Etna sulfur emissions on the atmospheric composition and aerosol properties in the central mediterranean: A statistical analysis over the period 2000-2013 based on observations and lagrangian modelling. Atmospheric Environment, 148, 77–88. https://doi.org/10.1016/j.atmosenv.2016.10.032
  • Shell, K. M., Frouin, R., Nakamoto, S., & Somerville, R. C. J. (2003). Atmospheric response to solar radiation absorbed by phytoplankton. Journal of Geophysical Research: Atmospheres, 108(D15). https://doi.org/10.1029/2003JD003440
  • Somayajula, S. A., Devred, E., Bélanger, S., Antoine, D., Vellucci, V., & Babin, M. (2018). Evaluation of sea-surface photosynthetically available radiation algorithms under various sky conditions and solar elevations. Applied Optics, 57(12), 3088–3105. https://doi.org/10.1364/AO.57.003088
  • Su, W., Charlock, T. P., Rose, F. G., & Rutan, D. (2007). Photosynthetically active radiation from clouds and the Earth’s radiant energy system (CERES) products. Journal of Geophysical Research: Biogeosciences, 112(G2), G02022. https://doi.org/10.1029/2006JG000290
  • Tan, J., Frouin, R., Jolivet, D., Compiègne, M., & Ramon, D. (2020). Evaluation of the NASA OBPG MERIS ocean surface PAR product in clear sky conditions. Optics Express, 28(22), 33157–33175. https://doi.org/10.1364/OE.396066
  • Tao, X., Liang, S., He, T., & Jin, H. (2016). Estimation of fraction of absorbed photosynthetically active radiation from multiple satellite data: model development and validation. Remote Sensing of Environment, 184, 539–557. https://doi.org/10.1016/j.rse.2016.07.036
  • Tao, X., Liang, S., & Wang, D. (2015). Assessment of five global satellite products of fraction of absorbed photosynthetically active radiation: Intercomparison and direct validation against ground-based data. Remote Sensing of Environment, 163, 270–285. https://doi.org/10.1016/j.rse.2015.03.025
  • Trisolino, P., diSarra, A., Anello, F., Bommarito, C., DiIorio, T., Meloni, D., Monteleone, F., Pace, G., Piacentino, S., & Sferlazzo, D. (2018). A long-term time series of global and diffuse photosynthetically active radiation in the Mediterranean: Interannual variability and cloud effects. Atmospheric Chemistry and Physics, 18(11), 7985–8000. https://doi.org/10.5194/acp-18-7985-2018
  • Trisolino, P., diSarra, A., Meloni, D., & Pace, G. (2016). Determination of global and diffuse photosynthetically active radiation from multi-filter shadowband radiometer (MFRSR. Applied Optics, 55(29), 8280–8286. https://doi.org/10.1364/AO.55.008280
  • Vazyulya, S. V., Kopelevich, O. V., Sheberstov, S. V., & Artemiev, V. A. (2016). Estimation of sea surface solar radiation at 400-700 nm using satellite ocean color data, and its validation by ship data. Optics Express, 24(6), A604–A611. https://doi.org/10.1364/OE.24.00A604
  • Vermote, E. F., Tanré, D., Deuzé, J. L., Herman, M., & Morcrette, J. J. (1997). Second simulation of the satellite signal in the solar spectrum, 6s: An overview. IEEE Transactions on Geoscience and Remote Sensing, 35(3), 675–686. https://doi.org/10.1109/36.581987
  • Werkmeister, A., Lockhoff, M., Schrempf, M., Tohsing, K., Liley, B., & Seckmeye, G. (2015). Comparing satellite- to ground-based automated and manual cloud coverage observations – a case study. Atmospheric Measurement Techniques, 8(5), 2001–2015. https://doi.org/10.5194/amt-8-2001-2015
  • Wielicki, B. A., & Parker, L. (1992). On the determination of cloud cover from satellite sensors: The effect of sensor spatial resolution. Journal of Geophysical Research Atmospheres, 97:(D12), 12799–12823. https://doi.org/10.1029/92JD01061
  • Zhang, X., Liang, S., Zhou, G., Wu, H., & Zhao, X. (2014). Generating global land surface satellite incident shortwave radiation and photosynthetically active radiation products from multiple satellite data. Remote Sensing of Environment, 152, 318–332. https://doi.org/10.1016/j.rse.2014.07.003
  • Zhang, Z., Zhao, L., & Lin, A. (2020). Evaluating the performance of sentinel-3A OLCI land products for gross primary productivity estimation using AmeriFlux data. Remote Sensing, 12(12), 1927. https://doi.org/10.3390/rs12121927