366
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Integrated Evaluation and error decomposition of four gridded precipitation products using dense rain gauge observations over the Yunnan-Kweichow Plateau, China

ORCID Icon, , , , , & show all
Article: 2322742 | Received 09 Oct 2023, Accepted 19 Feb 2024, Published online: 11 Mar 2024

References

  • Aksu, H., & Akgül, M. (2020). Performance evaluation of CHIRPS satellite precipitation estimates over Turkey. Theoretical and Applied Climatology, 142(1–2), 71–19. https://doi.org/10.1007/s00704-020-03301-5
  • Ashouri, H., Hsu, K.-L., Sorooshian, S., Braithwaite, D. K., Knapp, K. R., Cecil, L. D., Nelson, B. R., & Prat, O. P. (2015). PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies. Bulletin of the American Meteorological Society, 96(1), 69–83. https://doi.org/10.1175/BAMS-D-13-00068.1
  • Ayat, H., Reza Kavianpour, M., Moazami, S., Hong, Y., & Ghaemi, E. (2018). Calibration of weather radar using region probability matching method (RPMM). Theoretical and Applied Climatology, 134(1), 165–176. https://doi.org/10.1007/s00704-017-2266-7
  • Baatz, R., Hendricks Franssen, H. J., Euskirchen, E., Sihi, D., Dietze, M., Ciavatta, S., Fennel, K., Beck, H., De Lannoy, G., Pauwels, V. R. N., Raiho, A., Montzka, C., Williams, M., Mishra, U., Poppe, C., Zacharias, S., Lausch, A., Samaniego, L. … Vereecken, H. (2021). Reanalysis in earth system science: Toward terrestrial ecosystem reanalysis. Reviews of Geophysics, 59(3), e2020RG000715. https://doi.org/10.1029/2020RG000715
  • Bandhauer, M., Isotta, F., Lakatos, M., Lussana, C., Båserud, L., Izsák, B., Szentes, O., Tveito, O. E., & Frei, C. (2022). Evaluation of daily precipitation analyses in E-OBS (v19.0e) and ERA5 by comparison to regional high-resolution datasets in European regions. International Journal of Climatology, 42(2), 727–747. https://doi.org/10.1002/joc.7269
  • Belete, M., Deng, J., Wang, K., Zhou, M., Zhu, E., Shifaw, E., & Bayissa, Y. (2020). Evaluation of satellite rainfall products for modeling water yield over the source region of Blue Nile Basin. Science of the Total Environment, 708, 134834. https://doi.org/10.1016/j.scitotenv.2019.134834
  • Chao, L., Zhang, K., Li, Z., Zhu, Y., Wang, J., & Yu, Z. (2018). Geographically weighted regression based methods for merging satellite and gauge precipitation. Journal of Hydrology, 558, 275–289. https://doi.org/10.1016/j.jhydrol.2018.01.042
  • Chen, C., Chen, Q., Qin, B., Zhao, S., & Duan, Z. (2020). Comparison of different methods for spatial downscaling of GPM IMERG V06B satellite precipitation product over a typical arid to semi-arid area. Frontiers in Earth Science, 8, 8. https://doi.org/10.3389/feart.2020.536337
  • Choi, Y., Cha, K., Back, M., Choi, H., & Jeon, T.(2021). Rain-F: A fusion dataset for rainfall prediction using convolutional neural network. Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. https://doi.org/10.1109/igarss47720.2021.9555094
  • Cooley, S. S., Williams, C. A., Fisher, J. B., Halverson, G. H., Perret, J., & Lee, C. M. (2019). Assessing regional drought impacts on vegetation and evapotranspiration: A case study in Guanacaste, Costa Rica. Ecological Applications, 29(2), e01834. https://doi.org/10.1002/eap.1834
  • Dahri, Z. H., Ludwig, F., Moors, E., Ahmad, S., Ahmad, B., Shoaib, M., Ali, I., Iqbal, M. S., Pomee, M. S., Mangrio, A. G., Ahmad, M. M., & Kabat, P. (2021). Spatio-temporal evaluation of gridded precipitation products for the high-altitude indus basin. International Journal of Climatology: A Journal of the Royal Meteorological Society, 41(8), 4283–4306. https://doi.org/10.1002/joc.7073
  • Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M. … Vitart, F. (2011). The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), 553–597. https://doi.org/10.1002/qj.828
  • Dong, J., Crow, W. T., Duan, Z., Wei, L., & Lu, Y. (2019). A double instrumental variable method for geophysical product error estimation. Remote Sensing of Environment, 225, 217–228. https://doi.org/10.1016/j.rse.2019.03.003
  • Driscoll, S. J., Harrison, D. L., & Kitchen, M. (2000). Improving precipitation estimates from weather radar using quality control and correction techniques. Meteorological Applications, 7(2), 135–144. https://doi.org/10.1017/S1350482700001468
  • Duan, Z., Duggan, E., Chen, C., Gao, H., Dong, J., & Liu, J. (2021). Comparison of Traditional Method and Triple Collocation analysis for Evaluation of multiple gridded precipitation products across Germany. Journal of Hydrometeorology, 22(11), 2983–2999. https://doi.org/10.1175/JHM-D-21-0049.1
  • Fang, K., Pan, M., & Shen, C. (2019). The value of SMAP for long-term soil moisture estimation with the help of deep learning. IEEE Transactions on Geoscience and Remote Sensing, 57(4), 2221–2233. https://doi.org/10.1109/TGRS.2018.2872131
  • Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Scientific Data, 2(1), 150066. https://doi.org/10.1038/sdata.2015.66
  • Gan, F., Chen, S., Gao, Y., & Li, Y. (2022). An evaluation of the performance of IMERG hourly precipitation estimates in a geographical sub-region with complex terrain and climate conditions: A case study in the upper Red River Basin. Remote Sensing Letters, 13(3), 301–310. https://doi.org/10.1080/2150704X.2021.2014076
  • Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., Silva, A. M. D. … Zhao, B. (2017). The Modern-era retrospective analysis for research and applications, version 2 (MERRA-2). Journal of Climate, 30(14), 5419–5454. https://doi.org/10.1175/JCLI-D-16-0758.1
  • Gomis-Cebolla, J., Rattayova, V., Salazar-Galán, S., & Francés, F. (2023). Evaluation of ERA5 and ERA5-land reanalysis precipitation datasets over Spain (1951–2020). Atmospheric Research, 284, 106606. https://doi.org/10.1016/j.atmosres.2023.106606
  • Hoang, T., Manomaiphiboon, K., Singhrattna, N., & Assareh, N. (2020). Evaluation of multiple sub-daily satellite precipitation products for Thailand. Journal of Sustainable Energy & Environment, 11(2020), 81–91. https://www.semanticscholar.org/paper/Evaluation-of-multiple-sub-daily-satellite-products-Trang-Manomaiphiboon/aee14b4e1ce4818ad4e226c159b2720c58702f66
  • Hofstra, N., New, M., & McSweeney, C. (2010). The influence of interpolation and station network density on the distributions and trends of climate variables in gridded daily data. Climate Dynamics, 35(5), 841–858. https://doi.org/10.1007/s00382-009-0698-1
  • Hong, L., Huang, Y., Peng, S., & Hewitt, J. (2020). Monitoring the trends of water-erosion desertification on the Yunnan-Guizhou Plateau, China from 1989 to 2016 using time-series Landsat images. Public Library of Science ONE, 15(2), e0227498. https://doi.org/10.1371/journal.pone.0227498
  • Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kummerow, C. D., Kojima, M., Oki, R., Nakamura, K., & Iguchi, T. (2014). The global precipitation measurement mission. Bulletin of the American Meteorological Society, 95(5), 701–722. https://doi.org/10.1175/BAMS-D-13-00164.1
  • Irannezhad, M., & Liu, J. (2022). Evaluation of six gauge-based gridded climate products for analyzing long-term historical precipitation patterns across the Lancang-Mekong River Basin. Geography and Sustainability, 3(1), 85–103. https://doi.org/10.1016/j.geosus.2022.03.002
  • Jackson, G., Kirschbaum, D., Petersen, W., Huffman, G., Kidd, C., Stocker, E., & Kakar, R. (2018). The global precipitation measurement (GPM) mission’s scientific achievements and societal contributions: Reviewing four years of advanced rain and snow observations. Quarterly Journal of the Royal Meteorological Society, 144(S1), 27–48. https://doi.org/10.1002/qj.3313
  • Jiang, Q., Li, W., Fan, Z., He, X., Sun, W., Chen, S., Wen, J., Gao, J., & Wang, J. (2021). Evaluation of the ERA5 reanalysis precipitation dataset over Chinese mainland. Journal of Hydrology, 595, 125660. https://doi.org/10.1016/j.jhydrol.2020.125660
  • Ji, H., Peng, D., Gu, Y., Liang, Y., & Luo, X. (2022). Evaluation of multiple satellite precipitation products and their potential utilities in the Yarlung Zangbo River Basin. Scientific Reports, 12(1), 13334. https://doi.org/10.1038/s41598-022-17551-y
  • Joyce, R. J., Janowiak, J. E., Arkin, P. A., & Xie, P. (2004). CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of Hydrometeorology, 5(3), 487–503. https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2
  • Khan, M. K. U., Iqbal, M. F., Mahmood, I., Shahzad, M. I., Zafar, Q., & Khalid, B. (2023). Evaluation of precipitation products over different climatic zones of Pakistan. Theoretical and Applied Climatology, 151(3), 1301–1321. https://doi.org/10.1007/s00704-022-04355-3
  • Kim, S., Sharma, A., Wasko, C., & Nathan, R. (2022). Linking total precipitable water to precipitation extremes globally. Earth’s Future, 10(2), e2021EF002473. https://doi.org/10.1029/2021EF002473
  • Kirstetter, P. E. (2022). Evaluation of IMERG over CONUS complex terrain using environmental variables. Geophysical Research Letters, 49(19), e2022GL100186. https://doi.org/10.1029/2022GL100186
  • Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., & Takahashi, K. (2015). The JRA-55 reanalysis: General specifications and basic characteristics. Journal of the Meteorological Society of Japan Ser II, 93(1), 5–48. https://doi.org/10.2151/jmsj.2015-001
  • Le, X.-H., Nguyen Van, L., Hai Nguyen, D., Nguyen, G. V., Jung, S., & Lee, G. (2023). Comparison of bias-corrected multisatellite precipitation products by deep learning framework. International Journal of Applied Earth Observation and Geoinformation, 116, 103177. https://doi.org/10.1016/j.jag.2022.103177
  • Levizzani, V., & Cattani, E. (2019). Satellite remote sensing of precipitation and the Terrestrial Water Cycle in a changing climate. Remote Sensing, 11(19), 2301. https://doi.org/10.3390/rs11192301
  • Li, X., Chen, Y., Wang, H., & Zhang, Y. (2020). Assessment of GPM IMERG and radar quantitative precipitation estimation (QPE) products using dense rain gauge observations in the Guangdong-Hong Kong-Macao Greater Bay area, China. Atmospheric Research, 236, 104834. https://doi.org/10.1016/j.atmosres.2019.104834
  • Liu, Z., Jiang, L., Shi, C., Zhang, T., Zhou, Z., Liao, J., Yao, S., Liu, J., Wang, M., Wang, H., Liang, X., Zhang, Z., Yao, Y., Zhu, T., Chen, Z., Xu, W., Cao, L., Jiang, H., & Hu, K. (2023). CRA-40/Atmosphere—The first-generation Chinese Atmospheric reanalysis (1979–2018): System description and performance evaluation. Journal of Meteorological Research, 37(1), 1–19. https://doi.org/10.1007/s13351-023-2086-x
  • Li, X., Yang, Y., Mi, J., Bi, X., Zhao, Y., Huang, Z., Liu, C., Zong, L., & Li, W. (2021). Leveraging machine learning for quantitative precipitation estimation from fengyun-4 geostationary observations and ground meteorological measurements. Atmospheric Measurement Techniques, 14(11), 7007–7023. https://doi.org/10.5194/amt-14-7007-2021
  • Loo, Y. Y., Billa, L., & Singh, A. (2015). Effect of climate change on seasonal monsoon in Asia and its impact on the variability of monsoon rainfall in Southeast Asia. Geoscience Frontiers, 6(6), 817–823. https://doi.org/10.1016/j.gsf.2014.02.009
  • Lu, H., Ding, L., Ma, Z., Li, H., Lu, T., Su, M., & Xu, J. (2020). Spatiotemporal assessments on the satellite-based precipitation products from Fengyun and GPM over the Yunnan-Kweichow Plateau, China. Earth and Space Science, 7(1), e2019EA000857. https://doi.org/10.1029/2019EA000857
  • Lu, H., Huang, Z., Ding, L., Lu, T., & Yuan, Y. (2021). Calibrating FY4A QPE using CMPA over Yunnan–Kweichow Plateau in summer 2019. European Journal of Remote Sensing, 54(1), 476–486. https://doi.org/10.1080/22797254.2021.1960202
  • Luo, X., Fan, X., Ji, X., & Li, Y. (2020). Evaluation of corrected APHRODITE estimates for hydrological simulation in the Yarlung Tsangpo–Brahmaputra River Basin. International Journal of Climatology, 40(9), 4158–4170. https://doi.org/10.1002/joc.6449
  • Mannig, B., Müller, M., Starke, E., Merkenschlager, C., Mao, W., Zhi, X., Podzun, R., Jacob, D., & Paeth, H. (2013). Dynamical downscaling of climate change in central asia. Global and Planetary Change, 110, 26–39. https://doi.org/10.1016/j.gloplacha.2013.05.008
  • Ma, Z., Xu, J., Ma, Y., Zhu, S., He, K., Zhang, S., Ma, W., & Xu, X. (2022). AERA5-Asia: A long-term Asian precipitation dataset (0.1°, 1-hourly, 1951–2015, Asia) anchoring the ERA5-land under the total volume control by APHRODITE. Bulletin of the American Meteorological Society, 103(4), E1146–E1171. https://doi.org/10.1175/BAMS-D-20-0328.1
  • Ma, Z., Xu, J., Zhu, S., Yang, J., Tang, G., Yang, Y., Shi, Z., & Hong, Y. (2020). AIMERG: A new Asian precipitation dataset (0.1°/half-hourly, 2000–2015) by calibrating the GPM-era IMERG at a daily scale using APHRODITE. Earth System Science Data, 12(3), 1525–1544. https://doi.org/10.5194/essd-12-1525-2020
  • Miao, Q., Yuan, S., Shi, L., & Gu, X. (2007). Study on the spring drought rule in the karst region of Yunnan and Guizhou Plateau in China. Proceedings of SPIE - The International Society for Optical Engineering, 6790. https://doi.org/10.1117/12.746860
  • Michaelides, S., Levizzani, V., Anagnostou, E., Bauer, P., Kasparis, T., & Lane, J. E. (2009). Precipitation: Measurement, remote sensing, climatology and modeling. Atmospheric Research, 94(4), 512–533. https://doi.org/10.1016/j.atmosres.2009.08.017
  • Mo, C., Meng, X., Ruan, Y., Wang, Y., Lei, X., Xing, Z., & Lai, S. (2022). Drought assessment based on fused satellite and station precipitation data: An example from the Chengbi River Basin, China. ISPRS International Journal of Geo-Information, 11(1), 48. https://doi.org/10.3390/ijgi11010048
  • Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., & Thépaut, J.-N. (2021). ERA5-land: A state-of-the-art global reanalysis dataset for land applications. Earth System Science Data, 13(9), 4349–4383. https://doi.org/10.5194/essd-13-4349-2021
  • Nan, L., Yang, M., Wang, H., Xiang, Z., & Hao, S. (2021). Comprehensive Evaluation of Global Precipitation Measurement Mission (GPM) IMERG Precipitation products over Mainland China. Water, 13(23), 3381. https://doi.org/10.3390/w13233381
  • Nawaz, Z., Li, X., Chen, Y., Nawaz, N., Gull, R., & Elnashar, A. (2020). Spatio-temporal assessment of Global precipitation products over the largest agriculture region in Pakistan. Remote Sensing, 12(21), 3650. https://doi.org/10.3390/rs12213650
  • Ning, S., Song, F., Udmale, P., Jin, J., Thapa, B., & Ishidaira, H. (2017). Error analysis and evaluation of the latest GSMap and IMERG precipitation products over Eastern China. Advances in Meteorology, 2017, 1–16. https://doi.org/10.1155/2017/1803492
  • Özerdem, M. S., Acar, E., & Ekinci, R. (2017). Soil moisture estimation over vegetated agricultural areas: Tigris Basin, Turkey from radarsat-2 data by Polarimetric Decomposition Models and a Generalized Regression Neural Network. Remote Sensing, 9(4), 395. https://doi.org/10.3390/rs9040395
  • Parker, W. S. (2016). Reanalyses and observations: What’s the difference? Bulletin of the American Meteorological Society, 97(9), 1565–1572. https://doi.org/10.1175/BAMS-D-14-00226.1
  • Peng, F., Zhao, S., Chen, C., Cong, D., Wang, Y., & Ouyang, H. (2020). Evaluation and comparison of the precipitation detection ability of multiple satellite products in a typical agriculture area of China. Atmospheric Research, 236, 104814. https://doi.org/10.1016/j.atmosres.2019.104814
  • Prakash, S., Mitra, A. K., Momin, I. M., Rajagopal, E. N., Basu, S., Collins, M., Turner, A. G., Achuta Rao, K., & Ashok, K. (2015). Seasonal intercomparison of observational rainfall datasets over India during the southwest monsoon season. International Journal of Climatology, 35(9), 2326–2338. https://doi.org/10.1002/joc.4129
  • Prein, A. F., & Gobiet, A. (2017). Impacts of uncertainties in European gridded precipitation observations on regional climate analysis. International Journal of Climatology, 37(1), 305–327. https://doi.org/10.1002/joc.4706
  • Qiu, S., Peng, J., Zheng, H., Xu, Z., & Meersmans, J. (2022). How can massive ecological restoration programs interplay with social-ecological systems? A review of research in the South China karst region. Science of the Total Environment, 807, 150723. https://doi.org/10.1016/j.scitotenv.2021.150723
  • Reda, K., Liu, X., Haile, G., Sun, S., & Tang, Q. (2021). Hydrological evaluation of satellite and Reanalysis-based Rainfall Estimates Over the Upper Tekeze Basin, Ethiopia. https://doi.org/10.22541/au.161494395.50246119/v1
  • Ren, P., Li, J., Feng, P., Guo, Y., & Ma, Q. (2018). Evaluation of multiple satellite precipitation products and their use in hydrological modelling over the Luanhe River Basin, China. Water, 10(6), 677. https://doi.org/10.3390/w10060677
  • Rong, G., & Zhang, J.(2023). Risk assessment of extreme precipitation-geological hazard chains in the Yunnan-Guizhou Plateau. Advances in Economics, Business and Management Research, 18–25. https://doi.org/10.2991/978-94-6463-194-4_4
  • Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Ziese, M., & Rudolf, B. (2014). GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theoretical and Applied Climatology, 115(1–2), 15–40. https://doi.org/10.1007/s00704-013-0860-x
  • Shen, Y., Zhao, P., Pan, Y., & Yu, J. (2014). A high spatiotemporal gauge‐satellite merged precipitation analysis over China. Journal of Geophysical Research: Atmospheres, 119(6), 3063–3075. https://doi.org/10.1002/2013JD020686
  • Song, X., Zhang, G., Liu, F., Li, D., Zhao, Y., & Yang, J. (2016). Modeling spatio-temporal distribution of soil moisture by deep learning-based cellular automata model. Journal of Arid Land, 8(5), 734–748. https://doi.org/10.1007/s40333-016-0049-0
  • Soo, E. Z. X., Wan Jaafar, W. Z., Lai, S. H., Othman, F., Elshafie, A., Islam, T., Srivastava, P., & Othman Hadi, H. S. (2020). Precision of raw and bias-adjusted satellite precipitation estimations (TRMM, IMERG, CMORPH, and PERSIANN) over extreme flood events: Case study in Langat river basin, Malaysia. Journal of Water and Climate Change, 11(S1), 322–342. https://doi.org/10.2166/wcc.2020.180
  • Sun, H., Yang, Y., Wu, R., Gui, D., Xue, J., Liu, Y., & Yan, D. (2019). Improving estimation of cropland evapotranspiration by the bayesian Model averaging method with surface energy balance models. Atmosphere, 10(4), 188. https://doi.org/10.3390/atmos10040188
  • Tang, X., Li, H., Qin, G., Huang, Y., & Qi, Y. (2023). Evaluation of satellite-based precipitation products over complex topography in Mountainous Southwestern China. Remote Sensing, 15(2), 473. https://doi.org/10.3390/rs15020473
  • Tanim, A. H., Mullick, M. R. A., & Sikdar, M. S. (2021). Evaluation of spatial rainfall products in sparsely gauged region using copula uncertainty modeling with triple collocation. Journal of Hydrologic Engineering, 26(4), 04021004. https://doi.org/10.1061/(ASCE)HE.1943-5584.0002071
  • Tian, Y., Peters-Lidard, C. D., Eylander, J. B., Joyce, R. J., Huffman, G. J., Adler, R. F., Hsu, K.-L., Turk, F. J., Garcia, M., & Zeng, J. (2009). Component analysis of errors in satellite-based precipitation estimates. Journal of Geophysical Research: Atmospheres, 114(D24). https://doi.org/10.1029/2009JD011949
  • Tong, K., Su, F., Yang, D., & Hao, Z. (2014). Evaluation of satellite precipitation retrievals and their potential utilities in hydrologic modeling over the Tibetan Plateau. Journal of Hydrology, 519, 423–437. https://doi.org/10.1016/j.jhydrol.2014.07.044
  • Torsri, K., Lin, Z., Dike, V., Thodsan, T., & Wongsaming, P. (2022). Evaluation of Spatial-Temporal Characteristics of Rainfall Variations over Thailand inferred from different gridded datasets. Water, 14(9), 1359. https://doi.org/10.3390/w14091359
  • Wang, R., Chen, J., & Wang, X. (2017). Comparison of IMERG level-3 and TMPA 3B42V7 in estimating typhoon-related heavy rain. Water, 9(4), 276. https://doi.org/10.3390/w9040276
  • Wedajo, G. K., Muleta, M. K., & Awoke, B. G. (2021). Performance evaluation of multiple satellite rainfall products for Dhidhessa River Basin (DRB), Ethiopia. Atmospheric Measurement Techniques, 14(3), 2299–2316. https://doi.org/10.5194/amt-14-2299-2021
  • Wu, X., & Zhao, N. (2023). Evaluation and comparison of six high-resolution daily precipitation products in Mainland China. Remote Sensing, 15(1), 223. https://doi.org/10.3390/rs15010223
  • Xiao, X., Liu, X., Gao, Y., Zhang, S., & Xu, W. (2023). Evaluation of Regional Drought in Yunnan–Guizhou Plateau of China. Proceedings of the nternational Conference on Computational & Experimental Engineering and Sciences (pp. 345–359). https://doi.org/10.1007/978-3-031-42515-8_23.
  • Xie, W., Yi, S., Leng, C., Xia, D., Li, M., Zhong, Z., & Ye, J. (2022). The evaluation of IMERG and ERA5-land daily precipitation over China with considering the influence of gauge data bias. Scientific Reports, 12(1), 8085. https://doi.org/10.1038/s41598-022-12307-0
  • Xin, Y., Lu, N., Jiang, H., Liu, Y., & Yao, L. (2021). Performance of ERA5 reanalysis precipitation products in the Guangdong-Hong Kong-Macao greater Bay area, China. Journal of Hydrology, 602, 126791. https://doi.org/10.1016/j.jhydrol.2021.126791
  • Xin, Y., Yang, Y., Chen, X., Yue, X., Liu, Y., & Yin, C. (2022). Evaluation of IMERG and ERA5 precipitation products over the Mongolian Plateau. Scientific Reports, 12(1), 21776. https://doi.org/10.1038/s41598-022-26047-8
  • Xu, J., Ma, Z., Yan, S., & Peng, J. (2022). Do ERA5 and ERA5-land precipitation estimates outperform satellite-based precipitation products? A comprehensive comparison between state-of-the-art model-based and satellite-based precipitation products over mainland China. Journal of Hydrology, 605, 127353. https://doi.org/10.1016/j.jhydrol.2021.127353
  • Yao, J., Chen, Y., Yu, X., Zhao, Y., Guan, X., & Yang, L. (2020). Evaluation of multiple gridded precipitation datasets for the arid region of northwestern China. Atmospheric Research, 236, 104818. https://doi.org/10.1016/j.atmosres.2019.104818
  • Yu, C., Hu, D., Liu, M., Wang, S., & Di, Y. (2020). Spatio-temporal accuracy evaluation of three high-resolution satellite precipitation products in China area. Atmospheric Research, 241, 104952. https://doi.org/10.1016/j.atmosres.2020.104952
  • Zhang, Y., Ye, A., Nguyen, P., Analui, B., Sorooshian, S., & Hsu, K. (2021). New insights into error decomposition for precipitation products. Geophysical Research Letters, 48(17), e2021GL094092. https://doi.org/10.1029/2021GL094092
  • Zhang, Y., Ye, A., Nguyen, P., Analui, B., Sorooshian, S., & Hsu, K. (2022). QRF4P-NRT: Probabilistic Post-Processing of Near-Real-Time Satellite Precipitation Estimates Using Quantile Regression Forests. Water Resources Research, 58(5), e2022WR032117. https://doi.org/10.1029/2022WR032117
  • Zhao, Y., Xu, K., Dong, N., & Wang, H. (2022). Optimally integrating multi-source products for improving long series precipitation precision by using machine learning methods. Journal of Hydrology, 609, 127707. https://doi.org/10.1016/j.jhydrol.2022.127707
  • Zhou, Z., Guo, B., Xing, W., Zhou, J., Xu, F., & Xu, Y. (2020). Comprehensive evaluation of latest GPM era IMERG and GSMaP precipitation products over mainland China. Atmospheric Research, 246, 105132. https://doi.org/10.1016/j.atmosres.2020.105132
  • Zhu, S., & Ma, Z. (2022). PECA-FY4A: Precipitation estimation using Chromatographic analysis methodology for full-disc multispectral observations from FengYun-4A/AGRI. Remote Sensing of Environment, 282, 113234. https://doi.org/10.1016/j.rse.2022.113234
  • Zhu, D., Yang, Q., Xiong, K., & Xiao, H. (2022). Spatiotemporal variations in daytime and night-time precipitation on the Yunnan–Guizhou Plateau from 1960 to 2017. Atmosphere, 13(3), 415. https://doi.org/10.3390/atmos13030415