314
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Field-independent carbon mapping and quantification in forest plantation through remote sensing

, , , , , , & show all
Article: 2334717 | Received 03 Oct 2023, Accepted 21 Mar 2024, Published online: 09 Apr 2024

References

  • Alcaras, E., Costantino, D., Guastaferro, F., Parente, C., & Pepe, M. (2022). Normalized burn ratio plus (NBR+): A New Index for sentinel-2 imagery. Remote Sensing, 14(7), 1727. https://doi.org/10.3390/rs14071727
  • Asner, G. P., Mascaro, J., Anderson, C., Knapp, D. E., Martin, R. E., Kennedy-Bowdoin, T., van Breugel, M., Davies, S., Hall, J. S., Muller-Landau, H. C., Potvin, C., Sousa, W., Wright, J., & Bermingham, E. (2013). High-fidelity national carbon mapping for resource management and REDD+. Carbon Balance and Management, 8(1), 7. https://doi.org/10.1186/1750-0680-8-7
  • Avitabile, V., Herold, M., Heuvelink, G. B. M., Lewis, S. L., Phillips, O. L., Asner, G. P., Armston, J., Ashton, P. S., Banin, L., Bayol, N., Berry, N. J., Boeckx, P., Jong, B. H. J., DeVries, B., Girardin, C. A. J., Kearsley, E., Lindsell, J. A., Lopez‐Gonzalez, G., Lucas, R. … Willcock, S. (2016). An integrated pan‐tropical biomass map using multiple reference datasets. Global Change Biology, 22(4), 1406–15. https://doi.org/10.1111/gcb.13139
  • Baetens, L., Desjardins, C., & Hagolle, O. (2019). Validation of copernicus sentinel-2 cloud masks obtained from MAJA, Sen2Cor, and FMask processors using reference cloud masks generated with a supervised active learning procedure. Remote Sensing, 11(4), 433. https://doi.org/10.3390/rs11040433
  • Bastin, J.-F., Finegold, Y., Garcia, C., Mollicone, D., Rezende, M., Routh, D., Zohner, C. M., & Crowther, T. W. (2019). The global tree restoration potential. Science, 365(6448), 76–79. https://doi.org/10.1126/science.aax0848
  • Bowley, A. L. (1928). The standard deviation of the correlation coefficient. Journal of the American Statistical Association, 23(161), 31. https://doi.org/10.1080/01621459.1928.10502991
  • Bozzini, A., Francini, S., Chirici, G., Battisti, A., & Faccoli, M. (2023). Spruce bark beetle outbreak prediction through automatic classification of sentinel-2 imagery [article]. Forests, 14(6), 1116. https://doi.org/10.3390/f14061116
  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
  • Bright, B. C., Hudak, A. T., Kennedy, R. E., Braaten, J. D., & Henareh Khalyani, A. (2019). Examining post-fire vegetation recovery with landsat time series analysis in three western North American forest types. Fire Ecology, 15(1), 8. https://doi.org/10.1186/s42408-018-0021-9
  • Brown, S. (1997). Estimating biomass and biomass change in tropical forests. A primer. FAO.
  • Brown, S., Gillespie, A. J. R., & Lugo, A. E. (1989). Biomass Estimation Methods for Tropical Forests with applications to Forest Inventory Data. Forest Science. https://doi.org/10.1093/forestscience/35.4.881
  • Cavalli, A., Francini, S., Cecili, G., Cocozza, C., Congedo, L., Falanga, V., Spadoni, G. L., Maesano, M., Munafò, M., Chirici, G., & Scarascia Mugnozza, G. (2022). Afforestation monitoring through automatic analysis of 36-years landsat best available composites. iForest-Biogeosciences and Forestry, 15(4), 220.
  • Cavalli, A., Francini, S., McRoberts, R.E., Falanga, V., Congedo, L., De Fioravante, P., Maesano, M., Munafò, M., Chirici, G., & Scarascia Mugnozza, G. 2023. Estimating afforestation area using landsat time series and Photointerpreted datasets. Remote Sensing, 15(4), 923.
  • Cavanagh, R. D., Melbourne-Thomas, J., Grant, S. M., Barnes, D. K. A., Hughes, K. A., Halfter, S., Meredith, M. P., Murphy, E. J., Trebilco, R., & Hill, S. L. (2021). Future risk for southern ocean ecosystem services under climate change. Frontiers in Marine Science, 7, 7. https://doi.org/10.3389/fmars.2020.615214
  • Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J.-P., Nelson, B. W., Ogawa, H., Puig, H., Riéra, B., & Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 87–99. https://doi.org/10.1007/s00442-005-0100-x
  • Chave, J., Davies, S. J., Phillips, O. L., Lewis, S. L., Sist, P., Schepaschenko, D., Armston, J., Baker, T. R., Coomes, D., Disney, M., Duncanson, L., Hérault, B., Labrière, N., Meyer, V., Réjou-Méchain, M., Scipal, K., & Saatchi, S. (2019). Ground data are essential for biomass remote sensing missions. Surveys in Geophysics, 40(4), 863–880. https://doi.org/10.1007/s10712-019-09528-w
  • Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B. C., Duque, A., Eid, T., Fearnside, P. M., Goodman, R. C., Henry, M., Martínez-Yrízar, A., Mugasha, W. A., Muller-Landau, H. C., Mencuccini, M., Nelson, B. W., Ngomanda, A., Nogueira, E. M., Ortiz-Malavassi, E. … Vieilledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10), 3177–3190. https://doi.org/10.1111/gcb.12629
  • Chirici, G., Giannetti, F., Mazza, E., Francini, S., Travaglini, D., Pegna, R., & White, J. C. (2020). Monitoring clearcutting and subsequent rapid recovery in Mediterranean coppice forests with landsat time series. Annals of Forest Science, 77(2), 40. https://doi.org/10.1007/s13595-020-00936-2
  • Cohen, W. B., Fiorella, M., Gray, J., Helmer, E., & Anderson, K. (1998). An efficient and accurate method for mapping forest clearcuts in the Pacific Northwest using landsat imagery. Photogrammetric Engineering and Remote Sensing, 64(4), 293–300.
  • Cohen, W. B., Spies, T. A., Alig, R. J., Oetter, D. R., Maiersperger, T. K., & Fiorella, M. (2002). Characterizing 23 years (1972-95) of stand replacement disturbance in western Oregon forests with landsat imagery. Ecosystems (New York, NY), 5(2), 122–137. https://doi.org/10.1007/s10021-001-0060-X
  • Cohen, W. B., Spies, T. A., & Fiorella, M. (1995). Estimating the age and structure of forests in a multi-ownership landscape of western Oregon, U.S.A. International Journal of Remote Sensing, 16(4), 721–746. https://doi.org/10.1080/01431169508954436
  • Crist, E. P., & Cicone, R. C. (1984). Application of the Tasseled Cap concept to simulated thematic mapper data. Photogrammetric Engineering & Remote Sensing, 50(3), 343–352.
  • Csillik, O., Kumar, P., Mascaro, J., O’Shea, T., & Asner, G. P. (2019). Monitoring tropical forest carbon stocks and emissions using Planet satellite data. Scientific Reports, 9(1), 17831. https://doi.org/10.1038/s41598-019-54386-6
  • Dai, S., Zheng, X., Gao, L., Xu, C., Zuo, S., Chen, Q., Wei, X., & Ren, Y. (2021). Improving plot-level Model of forest biomass: A combined approach using machine learning with spatial statistics. Forests, 12(12), 1663. https://doi.org/10.3390/f12121663
  • D’Amico, G., Francini, S., Giannetti, F., Vangi, E., Travaglini, D., Chianucci, F., Mattioli, W., Grotti, M., Puletti, N., Corona, P., & Chirici, G. (2021). A deep learning approach for automatic mapping of poplar plantations using sentinel-2 imagery. GIScience & Remote Sensing, 58(8), 1352–1368. https://doi.org/10.1080/15481603.2021.1988427
  • D’Amico, G., McRoberts, R. E., Giannetti, F., Vangi, E., Francini, S., & Chirici, G. (2022). Effects of lidar coverage and field plot data numerosity on forest growing stock volume estimation. European Journal of Remote Sensing, 55(1), 199–212. https://doi.org/10.1080/22797254.2022.2042397
  • D’amico, G., Vangi, E., Francini, S., Giannetti, F., Nicolaci, A., Travaglini, D., Massai, L., Giambastiani, Y., Terranova, C., & Chirici, G. (2021). Are we ready for a national forest information system? State of the art of forest maps and airborne laser scanning data availability in Italy. iForest - Biogeosciences and Forestry, 14(2), 144–154. https://doi.org/10.3832/ifor3648-014
  • Dingman, H. F., & Perry, N. C. (1956). A comparison of the accuracy of the formula for the Standard Error of Pearson “r” with the accuracy of Fisher’s z-transformation. The Journal of Experimental Education, 24(4), 319–321. https://doi.org/10.1080/00220973.1956.11010555
  • Emick, E., Babcock, C., White, G. W., Hudak, A. T., Domke, G. M., & Finley, A. O. (2023). An approach to estimating forest biomass while quantifying estimate uncertainty and correcting bias in machine learning maps. Remote Sensing of Environment, 295, 113678. https://doi.org/10.1016/j.rse.2023.113678
  • Fairhead, J., Leach, M., & Scoones, I. (2012). Green grabbing: A new appropriation of nature? Journal of Peasant Studies, 39(2), 237–261. https://doi.org/10.1080/03066150.2012.671770
  • Fayolle, A., Doucet, J.-L., Gillet, J.-F., Bourland, N., & Lejeune, P. (2013). Tree allometry in Central Africa: Testing the validity of pantropical multi-species allometric equations for estimating biomass and carbon stocks. Forest Ecology and Management, 305, 29–37. https://doi.org/10.1016/j.foreco.2013.05.036
  • Feldpausch, T. R., Lloyd, J., Lewis, S. L., Brienen, R. J. W., Gloor, M., Monteagudo Mendoza, A., Lopez-Gonzalez, G., Banin, L., Abu Salim, K., Affum-Baffoe, K., Alexiades, M., Almeida, S., Amaral, I., Andrade, A., Aragão, L. E. O. C., Araujo Murakami, A., Arets, E. J. M. M., Arroyo, L., Aymard C, G. A., Phillips, O. L. (2012). Tree height integrated into pantropical forest biomass estimates. Biogeosciences, 9(8), 3381–3403. https://doi.org/10.5194/bg-9-3381-2012
  • Francini, S., Cavalli, A., D’Amico, G., McRoberts, R. E., Maesano, M., Munafò, M., Scarascia Mugnozza, G., & Chirici, G. (2023). Reusing remote sensing-based validation data: Comparing direct and indirect approaches for afforestation monitoring [article]. Remote Sensing, 15(6), 1638. https://doi.org/10.3390/rs15061638
  • Francini, S., Cocozza, C., Hölttä, T., Lintunen, A., Paljakka, T., Chirici, G., Traversi, M. L., & Giovannelli, A. (2023). A temporal segmentation approach for dendrometers signal-to-noise discrimination [article]. Computers and Electronics in Agriculture, 210, 107925. https://doi.org/10.1016/j.compag.2023.107925
  • Francini, S., D’Amico, G., Vangi, E., Borghi, C., & Chirici, G. (2022). Integrating GEDI and landsat: Spaceborne lidar and four decades of optical imagery for the analysis of forest disturbances and biomass changes in Italy. Sensors, 22(5), 2015. https://doi.org/10.3390/s22052015
  • Francini, S., Hermosilla, T., Coops, N. C., Wulder, M. A., White, J. C., & Chirici, G. (2023). An assessment approach for pixel-based image composites [article]. ISPRS Journal of Photogrammetry and Remote Sensing, 202, 1–12. https://doi.org/10.1016/j.isprsjprs.2023.06.002
  • Francini, S., McRoberts, R. E., Giannetti, F., Marchetti, M., Scarascia Mugnozza, G., & Chirici, G. (2021). The three Indices three Dimensions (3I3D) algorithm: A new method for forest disturbance mapping and area estimation based on optical remotely sensed imagery. International Journal of Remote Sensing, 42(12), 4697–4715. https://doi.org/10.1080/01431161.2021.1899334
  • Francini, S., McRoberts, R. E., Giannetti, F., Mencucci, M., Marchetti, M., Scarascia Mugnozza, G., & Chirici, G. (2020). Near-real time forest change detection using PlanetScope imagery. European Journal of Remote Sensing, 53(1), 233–244. https://doi.org/10.1080/22797254.2020.1806734
  • Fuss, S., Canadell, J. G., Peters, G. P., Tavoni, M., Andrew, R. M., Ciais, P., Jackson, R. B., Jones, C. D., Kraxner, F., Nakicenovic, N., Le Quéré, C., Raupach, M. R., Sharifi, A., Smith, P., & Yamagata, Y. (2014). Betting on negative emissions. Nature Climate Change, 4(10), 850–853. https://doi.org/10.1038/nclimate2392
  • Gómez, C., White, J. C., & Wulder, M. A. (2011). Characterizing the state and processes of change in a dynamic forest environment using hierarchical spatio-temporal segmentation. Remote Sensing of Environment, 115(7), 1665–1679. https://doi.org/10.1016/j.rse.2011.02.025
  • Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google earth engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031
  • Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., Schlesinger, W. H., Shoch, D., Siikamäki, J. V., Smith, P., Woodbury, P., Zganjar, C., Blackman, A., Campari, J., Conant, R. T., Delgado, C., Elias, P., Gopalakrishna, T., Hamsik, M. R., Fargione, J. (2017). Natural climate solutions. Proceedings of the National Academy of Sciences, 114(44), 11645–11650. https://doi.org/10.1073/pnas.1710465114
  • Hansen, A. J., Neilson, R. P., Dale, V. H., Flather, C. H., Iverson, L. R., Currie, D. J., Shafer, S., Cook, R., & Bartlein, P. J. (2001). Global change in forests: Responses of species, communities, and biomes: Interactions between climate change and land use are projected to cause large shifts in biodiversity. BioScience, 51(9), 765–779. https://doi.org/10.1641/0006-3568(2001)051[0765:GCIFRO]2.0.CO;2
  • Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., & Townshend, J. R. G. (2013). High-resolution global maps of 21st-century forest cover change. Science, 342(6160), 850–853. https://doi.org/10.1126/science.1244693
  • Harris, N. L., Gibbs, D. A., Baccini, A., Birdsey, R. A., de Bruin, S., Farina, M., Fatoyinbo, L., Hansen, M. C., Herold, M., Houghton, R. A., Potapov, P. V., Suarez, D. R., Roman-Cuesta, R. M., Saatchi, S. S., Slay, C. M., Turubanova, S. A., & Tyukavina, A. (2021). Global maps of twenty-first century forest carbon fluxes. Nature Climate Change, 11(3), 234–240. https://doi.org/10.1038/s41558-020-00976-6
  • Hawryło, P., Francini, S., Chirici, G., Giannetti, F., Parkitna, K., Krok, G., Mitelsztedt, K., Lisańczuk, M., Stereńczak, K., Ciesielski, M., Wężyk, P., & Socha, J. (2020). The use of remotely sensed data and Polish NFI plots for prediction of growing stock volume using different predictive methods. Remote Sensing, 12(20), 3331. https://doi.org/10.3390/rs12203331
  • Healey, S. P., Yang, Z., Cohen, W. B., & Pierce, D. J. (2006). Application of two regression-based methods to estimate the effects of partial harvest on forest structure using landsat data. Remote Sensing of Environment, 101(1), 115–126. https://doi.org/10.1016/j.rse.2005.12.006
  • Helmer, E. H., Brown, S., & Cohen, W. B. (2000). Mapping montane tropical forest successional stage and land use with multi-date landsat imagery. International Journal of Remote Sensing, 21(11), 2163–2183. https://doi.org/10.1080/01431160050029495
  • Hettema, S., Rodgers, J., Sugiura, I., & Twaddell, E. (2022). Boulder County disasters: Mapping forest carbon stocks to understand carbon implications of treatment and wildfire.
  • Horwitz, D., & Thompson, D. (1952). A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association, 47(260), 663. https://doi.org/10.2307/2280784
  • Huang, Z., Yuan, X., & Liu, X. (2021). The key drivers for the changes in global water scarcity: Water withdrawal versus water availability. Journal of Hydrology, 601, 126658. https://doi.org/10.1016/j.jhydrol.2021.126658
  • INB. (2019a). Paquete Tecnologico Forestal Cedrela odorata L. Departamento de Investigación Forestal.
  • INB. (2019b). Paquete Tecnológico Forestal para Caoba de Petén Swietenia macrophylla King versión 1.0. Departamento de Investigación Forestal.
  • IPCC. (2018, August). Global warming of 1.5 °C - IPCC special report. Jurnal Penelitian Pendidikan Guru Sekolah Dasar, 6.
  • Jiang, F., Deng, M., Tang, J., Fu, L., & Sun, H. (2022). Integrating spaceborne LiDAR and sentinel-2 images to estimate forest aboveground biomass in Northern China. Carbon Balance and Management, 17(1), 12. https://doi.org/10.1186/s13021-022-00212-y
  • Jiang, X., Wang, D., Tang, L., Hu, J., & Xi, X. (2008). Analysing the vegetation cover variation of China from AVHRR‐NDVI data. International Journal of Remote Sensing, 29(17–18), 5301–5311. https://doi.org/10.1080/01431160802036466
  • Katila, M., Galloway, G., & de Jong, W. (2015). Forest monitoring: Methods for terrestrial investigations in Europe with an overview of North America and Asia. Springer.
  • Kennedy, R. E., Yang, Z., & Cohen, W. B. (2010). Detecting trends in forest disturbance and recovery using yearly landsat time series: 1. LandTrendr — temporal segmentation algorithms. Remote Sensing of Environment, 114(12), 2897–2910. https://doi.org/10.1016/j.rse.2010.07.008
  • Kennedy, R. E., Yang, Z., Gorelick, N., Braaten, J., Cavalcante, L., Cohen, W. B., & Healey, S. (2018). Implementation of the LandTrendr algorithm on Google earth engine. Remote Sensing, 10(5), 1–10. https://doi.org/10.3390/rs10050691
  • Key, C. H., & Benson, N. (2006). Landscape assessment: Ground measure of severity, the Composite burn Index; and remote sensing of severity, the normalized burn ratio.
  • Kollmuss, A., Zink, H., & Polycarp, C. (2008). Making sense of the voluntary carbon market: A comparison of carbon offset standards. Stockholm Environment Institute.
  • Latifi, H., Fassnacht, F., Hartig, F., Berger, C., Hernandez, J., & Koch, B. (2015). Does a post-stratification of ground units improve the forest biomass estimation by remote sensing data? In The 36th International Symposium on Remote Sensing of Environment (ISRSE), Berlin, Germay.
  • Lederer, M. (2011). From CDM to REDD+ — what do we know for setting up effective and legitimate carbon governance? Ecological Economics, 70(11), 1900–1907. https://doi.org/10.1016/j.ecolecon.2011.02.003
  • Liaw, A., & Wiener, M. (2002). Classification and Regression by randomForest. https://cran.r-project.org/doc/Rnews/.
  • Liu, Q., Liu, G., & Huang, C. (2018). Monitoring desertification processes in Mongolian Plateau using MODIS tasseled cap transformation and TGSI time series. Journal of Arid Land, 10(1), 12–26. https://doi.org/10.1007/s40333-017-0109-0
  • Li, X., Wang, W., Zhang, H., Wu, T., & Yang, H. (2022). Dynamic baselines depending on REDD+ payments: A comparative analysis based on a system dynamics approach. Ecological Indicators, 140, 108983. https://doi.org/10.1016/j.ecolind.2022.108983
  • Macintyre, P., van Niekerk, A., & Mucina, L. (2020). Efficacy of multi-season sentinel-2 imagery for compositional vegetation classification. International Journal of Applied Earth Observation and Geoinformation, 85, 101980. https://doi.org/10.1016/j.jag.2019.101980
  • Martínez-Muñoz, G., & Suárez, A. (2010). Out-of-bag estimation of the optimal sample size in bagging. Pattern recognition, 43(1), 143–152. https://doi.org/10.1016/j.patcog.2009.05.010
  • Mascaro, J., Asner, G. P., Muller-Landau, H. C., Van Breugel, M., Hall, J., & Dahlin, K. (2011). Controls over aboveground forest carbon density on Barro Colorado Island, Panama. Biogeosciences, 8(6), 1615–1629. https://doi.org/10.5194/bg-8-1615-2011
  • Matsushita, B., Yang, W., Chen, J., Onda, Y., & Qiu, G. (2007). Sensitivity of the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) to topographic effects: A case study in high-density cypress forest. Sensors, 7(11), 2636–2651. https://doi.org/10.3390/s7112636
  • McRoberts, R. E., Chen, Q., Domke, G. M., Ståhl, G., Saarela, S., & Westfall, J. A. (2016). Hybrid estimators for mean aboveground carbon per unit area. Forest Ecology and Management, 378, 44–56. https://doi.org/10.1016/j.foreco.2016.07.007
  • McRoberts, R. E., Næsset, E., & Gobakken, T. (2015). Optimizing the k-Nearest Neighbors technique for estimating forest aboveground biomass using airborne laser scanning data. Remote Sensing of Environment, 163, 13–22. https://doi.org/10.1016/j.rse.2015.02.026
  • Mokay, K., Raison, R. J., & Prokushkin, A. S. (2006). Critical analysis of root: Shoot ratios in terrestrial biomes. Global Change Biology, 12(1), 84–96. https://doi.org/10.1111/j.1365-2486.2005.001043.x
  • Pati, P. K., Kaushik, P., Khan, M. L., & Khare, P. K. (2022). Allometric equations for biomass and carbon stock estimation of small diameter woody species from tropical dry deciduous forests: Support to REDD+. Trees, Forests and People, 9, 100289. https://doi.org/10.1016/j.tfp.2022.100289
  • Penman, J., Gytarsky, M., Hiraishi, T., Irving, W., & Krug, T. (2006). 2006 IPCC - Guidelines for National Greenhouse Gas Inventories. Directrices Para Los Inventarios Nacionales GEI, 10(4060), 12.
  • Qiu, B., Zhang, K., Tang, Z., Chen, C., & Wang, Z. (2017). Developing soil indices based on brightness, darkness, and greenness to improve land surface mapping accuracy. GIScience & Remote Sensing, 54(5), 759–777. https://doi.org/10.1080/15481603.2017.1328758
  • Réjou‐Méchain, M., Tanguy, A., Piponiot, C., Chave, J., & Hérault, B. (2017). Biomass: And r package for estimating above‐ground biomass and its uncertainty in tropical forests. Methods in Ecology and Evolution, 8(9), 1163–1167. https://doi.org/10.1111/2041-210X.12753
  • Rutishauser, E., Noor’an, F., Laumonier, Y., Halperin, J., Verchot, K., Hergoualc’h, L., & Verchot, L. (2013). Generic allometric models including height best estimate forest biomass and carbon stocks in Indonesia. Forest Ecology and Management, 307, 219–225. https://doi.org/10.1016/j.foreco.2013.07.013
  • Särndal, C.-E., Swensson, B., & Wretman, J. (1992). Model assisted survey sampling. Springer. https://doi.org/10.1007/978-1-4612-4378-6
  • Schepaschenko, D., Moltchanova, E., Fedorov, S., Karminov, V., Ontikov, P., Santoro, M., See, L., Kositsyn, V., Shvidenko, A., Romanovskaya, A., Korotkov, V., Lesiv, M., Bartalev, S., Fritz, S., Shchepashchenko, M., & Kraxner, F. (2021). Russian forest sequesters substantially more carbon than previously reported. Scientific Reports, 11(1), 12825. https://doi.org/10.1038/s41598-021-92152-9
  • Schneider, L., & Geall, S. (2011). Addressing the risk of carbon leakage in a fragmented climate regime. Climate Policy.
  • Schultz, M., Clevers, J. G. P. W., Carter, S., Verbesselt, J., Avitabile, V., Quang, H. V., & Herold, M. (2016). Performance of vegetation indices from landsat time series in deforestation monitoring. International Journal of Applied Earth Observation and Geoinformation, 52, 318–327. https://doi.org/10.1016/j.jag.2016.06.020
  • Shammi, S. A., & Meng, Q. (2021). Use time series NDVI and EVI to develop dynamic crop growth metrics for yield modeling. Ecological Indicators, 121, 107124. https://doi.org/10.1016/j.ecolind.2020.107124
  • Shendryk, Y. (2022). Fusing GEDI with earth observation data for large area aboveground biomass mapping. International Journal of Applied Earth Observation and Geoinformation, 115, 103108. https://doi.org/10.1016/j.jag.2022.103108
  • Shi, T., & Xu, H. (2019). Derivation Of tasseled cap transformation coefficients for sentinel-2 MSI At-sensor reflectance data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(10), 4038–4048. https://doi.org/10.1109/JSTARS.2019.2938388
  • Sims, D. A., Hongyan, L., Hastings, S., Oechel, W. C., Rahman, A. F., & Gamon, J. A. (2006). Parallel adjustments in vegetation greenness and ecosystem CO2 exchange in response to drought in a Southern California chaparral ecosystem. Remote Sensing of Environment, 103(3), 289–303. https://doi.org/10.1016/j.rse.2005.01.020
  • Stass, M. S. (2011). Above ground biomass and carbon stocks in a secondary forest in comparison with adjacent primary forest on limestone in seram, the Moluccas, Indonesia.
  • Tomppo, E., Gschwantner, T., Lawrence, M., & McRoberts, R. E. (2010). National forest inventories: Pathways for common reporting. In E. Tomppo, T. Gschwantner, M. Lawrence, & R.E. McRoberts (Eds.), National Forest Inventories: Pathways for common reporting. Springer. https://doi.org/10.1007/978-90-481-3233-1
  • Tran, B., Tanase, M., Bennett, L., & Aponte, C. (2018). Evaluation of spectral indices for assessing fire severity in Australian temperate forests. Remote Sensing, 10(11), 1680. https://doi.org/10.3390/rs10111680
  • Tucker, C., Brandt, M., Hiernaux, P., Kariryaa, A., Rasmussen, K., Small, J., Igel, C., Reiner, F., Melocik, K., Meyer, J., Sinno, S., Romero, E., Glennie, E., Fitts, Y., Morin, A., Pinzon, J., McClain, D., Morin, P., Porter, C., Fensholt, R. (2023). Sub-continental-scale carbon stocks of individual trees in African drylands. Nature, 615(7950), 80–86. https://doi.org/10.1038/s41586-022-05653-6
  • UNEP-WCMC. (2009). Review of Swietenia macrophylla from Guatemala. A report to the European commission.
  • UNFCCC. (2023). Glossary of climate change terms - carbon credits.
  • Vaglio Laurin, G., Francini, S., Luti, T., Chirici, G., Pirotti, F., & Papale, D. (2021). Satellite open data to monitor forest damage caused by extreme climate-induced events: A case study of the vaia storm in Northern Italy. Forestry: An International Journal of Forest Research, 94(3), 407–416. https://doi.org/10.1093/forestry/cpaa043
  • Vangi, E., D’Amico, G., Francini, S., Borghi, C., Giannetti, F., Corona, P., Marchetti, M., Travaglini, D., Pellis, G., Vitullo, M., & Chirici, G. (2023). Large-scale high-resolution yearly modeling of forest growing stock volume and above-ground carbon pool. Environmental Modelling & Software, 159, 105580. https://doi.org/10.1016/j.envsoft.2022.105580
  • Vangi, E., D’Amico, G., Francini, S., & Chirici, G. (2022). GEDI4R: An R package for NASA’s GEDI level 4 a data downloading, processing and visualization. Earth Science Informatics, 16(1), 1109–1117. https://doi.org/10.1007/s12145-022-00915-3
  • Vangi, E., D’Amico, G., Francini, S., Giannetti, F., Lasserre, B., Marchetti, M., McRoberts, R. E., & Chirici, G. (2021). The effect of forest mask quality in the wall-to-wall estimation of growing stock volume. Remote Sensing, 13(5), 1038. https://doi.org/10.3390/rs13051038
  • Vijith, H., & Dodge-Wan, D. (2019). Modelling terrain erosion susceptibility of logged and regenerated forested region in northern Borneo through the analytical hierarchy process (AHP) and GIS techniques. Geoenvironmental Disasters, 6(1), 8. https://doi.org/10.1186/s40677-019-0124-x
  • White, J. C., Wulder, M. A., Hobart, G. W., Luther, J. E., Hermosilla, T., Griffiths, P., Coops, N. C., Hall, R. J., Hostert, P., Dyk, A., & Guindon, L. (2014). Pixel-based image compositing for large-area dense time series applications and science. Canadian Journal of Remote Sensing, 40(3), 192–212.
  • Wu, J. (2024). Role of green finance and carbon accounting in achieving sustainability. Humanities and Social Sciences Communications, 11, 128. https://doi.org/10.1057/s41599-023-02492-2
  • Wulder, M. A., Franklin, S. E., White, J. C., Linke, J., & Magnussen, S. (2006). An accuracy assessment framework for large‐area land cover classification products derived from medium‐resolution satellite data. International Journal of Remote Sensing, 27(4), 663–683. https://doi.org/10.1080/01431160500185284
  • Xu, L., Saatchi, S. S., Yang, Y., Yu, Y., Pongratz, J., Bloom, A. A., Bowman, K., Worden, J., Liu, J., Yin, Y., Domke, G., McRoberts, R. E., Woodall, C., Nabuurs, G.-J., De Miguel, S., Keller, M., Harris, N., Maxwell, S., & Schimel, D. (2021). Changes in global terrestrial live biomass over the 21st century. Science Advances, 7(27), eabe9829. https://doi.org/10.1126/sciadv.abe9829
  • Yang, Y., Shi, Y., Sun, W., Chang, J., Zhu, J., Chen, L., Wang, X., Guo, Y., Zhang, H., Yu, L., Zhao, S., Xu, K., Zhu, J., Shen, H., Wang, Y., Peng, Y., Zhao, X., Wang, X., Hu, H., & Liu, L.… Fang, J. (2022). Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Science China Life Sciences, 65(5), 861–895. https://doi.org/10.1007/s11427-021-2045-5
  • Zanne, A. E., Westoby, M., Falster, D. S., Ackerly, D. D., Loarie, S. R., Arnold, S. E. J., & Coomes, D. A. (2010). Angiosperm wood structure: Global patterns in vessel anatomy and their relation to wood density and potential conductivity. American Journal of Botany, 97(2), 207–215. https://doi.org/10.3732/ajb.0900178
  • Zhang, W., & Wen, J. (2014). Optimal portfolio selection of carbon credits under the risk-return framework. Renewable Energy.
  • Zoka, M., Psomiadis, E., & Dercas, N. (2018). The complementary use of optical and SAR data in monitoring flood events and their effects. EWaS3, 2018, 644. https://doi.org/10.3390/proceedings2110644