453
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Training data in satellite image classification for land cover mapping: a review

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2341414 | Received 19 Nov 2023, Accepted 07 Apr 2024, Published online: 14 Apr 2024

References

  • Álvarez-Martínez, J. M., Silió-Calzada, A., & Barquín, J. (2018). Can training data counteract topographic effects in supervised image classification? A sensitivity analysis in the Cantabrian Mountains (Spain). International Journal of Remote Sensing, 39(23), 8646–16. https://doi.org/10.1080/01431161.2018.1489163
  • Amor, I. B. S. B., Chehata, N., Bailly, J. S., Farah, I. R., & Lagacherie, P. (2018). Parcel-based active learning for large extent cultivated area mapping. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(1), 79–88. https://doi.org/10.1109/JSTARS.2017.2751148
  • Aswatha, S. M., Mukherjee, J., Biswas, P. K., & Aikat, S. (2017). Toward automated land cover classification in landsat images using spectral slopes at different bands. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(3), 1096–1104. https://doi.org/10.1109/JSTARS.2016.2602390
  • Banerjee, B., Bovolo, F., Bhattacharya, A., Bruzzone, L., Chaudhuri, S., & Buddhiraju, K. M. (2015). A novel graph-matching-based approach for domain adaptation in classification of remote sensing image pair. IEEE Transactions on Geoscience and Remote Sensing, 53(7), 4045–4062. https://doi.org/10.1109/TGRS.2015.2389520
  • Banks, S., Millard, K., Pasher, J., Richardson, M., Wang, H., & Duffe, J. (2015). Assessing the potential to operationalize shoreline sensitivity mapping: Classifying multiple wide fine quadrature polarized RADARSAT-2 and landsat 5 scenes with a single random forest model. Remote Sensing, 7(10), 13528–13563. https://doi.org/10.3390/rs71013528
  • Bejiga, M., Melgani, F., & Beraldini, P. (2019). Domain adversarial neural networks for large-scale land cover classification. Remote Sensing, 11(10), 1–20. https://doi.org/10.3390/rs11101153
  • Belgiu, M., & Csillik, O. (2018). Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sensing of Environment, 204, 509–523. https://doi.org/10.1016/j.rse.2017.10.005
  • Bratic, G., Oxoli, D., & Brovelli, M. A. (2023). Map of land cover agreement: Ensambling existing datasets for large-scale training data provision. Remote Sensing, 15(15), 3774. https://doi.org/10.3390/rs15153774
  • Brown, J. F., Tollerud, H. J., Barber, C. P., Zhou, Q., Dwyer, J. L., Vogelmann, J. E., Loveland, T. R., Woodcock, C. E., Stehman, S. V., Zhu, Z., Pengra, B. W., Smith, K., Horton, J. A., Xian, G., Auch, R. F., Sohl, T. L., Sayler, K. L., Gallant, A. L., Zelenak, D., & Rover, J. (2020). Lessons learned implementing an operational continuous United States national land change monitoring capability: The Land Change Monitoring, Assessment, and Projection (LCMAP) approach. Remote Sensing of Environment, 238, 111356. https://doi.org/10.1016/j.rse.2019.111356
  • Chaves, M. E., Picoli, M. C., & Sanches, I. D. (2020). Recent applications of landsat 8/OLI and sentinel-2/MSI for land use and land cover mapping: A systematic review. Remote Sensing, 12(18), 3062. https://doi.org/10.3390/rs12183062
  • Chen, X., Chen, J., Shi, Y., & Yamaguchi, Y. (2012). An automated approach for updating land cover maps based on integrated change detection and classification methods. ISPRS Journal of Photogrammetry and Remote Sensing, 71, 86–95. https://doi.org/10.1016/j.isprsjprs.2012.05.006
  • Chen, Y., Song, X., Wang, S., Huang, J., & Mansaray, L. R. (2016). Impacts of spatial heterogeneity on crop area mapping in Canada using MODIS data. ISPRS Journal of Photogrammetry and Remote Sensing, 119, 451–461. https://doi.org/10.1016/j.isprsjprs.2016.07.007
  • Chen, Y., Zhang, G., Cui, H., Li, X., Hou, S., Ma, J., Li, Z., Li, H., & Wang, H. (2023). A novel weakly supervised semantic segmentation framework to improve the resolution of land cover product. ISPRS Journal of Photogrammetry and Remote Sensing, 196, 73–92. https://doi.org/10.1016/j.isprsjprs.2022.12.027
  • Cherif, E., Hell, M., & Brandmeier, M. (2022). DeepForest: Novel deep learning models for land use and land cover classification using multi-temporal and -modal sentinel data of the Amazon Basin. Remote Sensing, 14(19). https://doi.org/10.3390/rs14195000
  • Colditz, R. R. (2015). An evaluation of different training sample allocation schemes for discrete and continuous land cover classification using decision tree-based algorithms. Remote Sensing, 7(8), 9655–9681. https://doi.org/10.3390/rs70809655
  • Costa, H., Benevides, P., Moreira, F. D., Moraes, D., & Caetano, M. (2022). Spatially stratified and multi-stage approach for national land cover mapping based on sentinel-2 data and expert knowledge. Remote Sensing, 14(8), 1865. https://doi.org/10.3390/rs14081865
  • Dash, P., Sanders, S. L., Parajuli, P., & Ouyang, Y. (2023). Improving the accuracy of land use and land cover classification of landsat data in an agricultural watershed. Remote Sensing, 15(16), 1–24. https://doi.org/10.3390/rs15164020
  • Demir, B., Bovolo, F., & Bruzzone, L. (2013). Updating land-cover maps by classification of image time series: A novel change-detection-driven transfer learning approach. IEEE Transactions on Geoscience and Remote Sensing, 51(1), 300–312. https://doi.org/10.1109/TGRS.2012.2195727
  • De Simone, L., Ouellette, W., & Gennari, P. (2022). Operational use of EO data for National Land cover official statistics in Lesotho. Remote Sensing, 14(14). https://doi.org/10.3390/rs1414329414
  • Fonte, C. C., Patriarca, J., Jesus, I., & Duarte, D. (2020). Automatic extraction and filtering of openstreetmap data to generate training datasets for land use land cover classification. Remote Sensing, 12(20), 1–31. https://doi.org/10.3390/rs12203428
  • Foody, G. M., & Arora, M. K. (1997). An evaluation of some factors affecting the accuracy of classification by an artificial neural network. International Journal of Remote Sensing, 18(4), 799–810. https://doi.org/10.1080/014311697218764
  • Ghassemi, B., Dujakovic, A., Żółtak, M., Immitzer, M., Atzberger, C., & Vuolo, F. (2022). Designing a European-Wide crop type mapping approach based on machine learning algorithms using lucas field survey and sentinel-2 data. Remote Sensing, 14(3). https://doi.org/10.3390/rs14030541
  • Ghorbanian, A., Kakooei, M., Amani, M., Mahdavi, S., Mohammadzadeh, A., & Hasanlou, M. (2020). Improved land cover map of Iran using sentinel imagery within google earth engine and a novel automatic workflow for land cover classification using migrated training samples. ISPRS Journal of Photogrammetry and Remote Sensing, 167, 276–288. https://doi.org/10.1016/j.isprsjprs.2020.07.013
  • Gómez, C., White, J. C., & Wulder, M. A. (2016). Optical remotely sensed time series data for land cover classification: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 116, 55–72. https://doi.org/10.1016/j.isprsjprs.2016.03.008
  • Graesser, J., Stanimirova, R., Tarrio, K., Copati, E. J., Volante, J. N., Verón, S. R., Banchero, S., Elena, H., Abelleyra, D. D., & Friedl, M. A. (2022). Temporally-consistent annual land cover from landsat time series in the southern cone of South America. Remote Sensing, 14(16), 1–28. https://doi.org/10.3390/rs14164005
  • Hermosilla, T., Wulder, M. A., White, J. C., & Coops, N. C. (2022). Land cover classification in an era of big and open data: Optimizing localized implementation and training data selection to improve mapping outcomes. Remote Sensing of Environment, 268, 112780. https://doi.org/10.1016/j.rse.2021.112780
  • Herold, M., Latham, J. S., DiGregorio, A., & Schmullius, C. C. (2006). Evolving standards in land cover characterization. Journal of Land Use Science, 1(2–4), 157–168. https://doi.org/10.1080/17474230601079316
  • He, T., Xie, C., Liu, Q., Guan, S., & Liu, G. (2019). Evaluation and comparison of random forest and A-LSTM networks for large-scale winter wheat identification. Remote Sensing, 11(14), 1665. https://doi.org/10.3390/rs11141665
  • Heydari, S. S., & Mountrakis, G. (2018). Effect of classifier selection, reference sample size, reference class distribution and scene heterogeneity in per-pixel classification accuracy using 26 landsat sites. Remote Sensing of Environment, 204, 648–658. https://doi.org/10.1016/j.rse.2017.09.035
  • Howard, D. M., Wylie, B. K., & Tieszen, L. L. (2012). Crop classification modelling using remote sensing and environmental data in the Greater Platte River Basin, USA. International Journal of Remote Sensing, 33(19), 6094–6108. https://doi.org/10.1080/01431161.2012.680617
  • Huang, C., Davis, L. S., & Townshend, J. R. G. (2002). An assessment of support vector machines for land cover classification. International Journal of Remote Sensing, 23(4), 725–749. https://doi.org/10.1080/01431160110040323
  • Huang, H., Wang, J., Liu, C., Liang, L., Li, C., & Gong, P. (2020). The migration of training samples towards dynamic global land cover mapping. ISPRS Journal of Photogrammetry and Remote Sensing, 161, 27–36. https://doi.org/10.1016/j.isprsjprs.2020.01.010
  • Huang, X., Weng, C., Lu, Q., Feng, T., & Zhang, L. (2015). Automatic labelling and selection of training samples for high-resolution remote sensing image classification over urban areas. Remote Sensing, 7(12), 16024–16044. https://doi.org/10.3390/rs71215819
  • Hu, J., Hong, D., & Zhu, X. X. (2019). MIMA: MAPPER-Induced manifold alignment for semi-supervised fusion of optical image and polarimetric sar data. IEEE Transactions on Geoscience and Remote Sensing, 57(11), 9025–9040. https://doi.org/10.1109/TGRS.2019.2924113
  • Hu, T., Huang, X., Li, J., & Zhang, L. (2018). A novel co-training approach for urban land cover mapping with unclear landsat time series imagery. Remote Sensing of Environment, 217, 144–157. https://doi.org/10.1016/j.rse.2018.08.017
  • Hu, Y., Zhang, Q., Zhang, Y., & Yan, H. (2018). A deep convolution neural network method for land cover mapping: A case study of Qinhuangdao, China. Remote Sensing, 10(12), 2053. https://doi.org/10.3390/rs10122053
  • Jamshidpour, N., Safari, A., & Homayouni, S. (2020). A GA-based multi-view, multi-learner active learning framework for hyperspectral image classification. Remote Sensing, 12(2), 297. https://doi.org/10.3390/rs12020297
  • Jia, X., Khandelwal, A., Carlson, K. M., Gerber, J. S., West, P. C., Samberg, L. H., & Kumar, V. (2020). Automated plantation mapping in southeast asia using MODIS data and imperfect visual annotations. Remote Sensing, 12(4), 636. https://doi.org/10.3390/rs12040636
  • Jing, W., Yang, Y., Yue, X., & Zhao, X. (2015). Mapping urban areas with integration of DMSP/OLS nighttime light and MODIS data using machine learning techniques. Remote Sensing, 7(9), 12419–12439. https://doi.org/10.3390/rs70912419
  • Jin, Q., Xu, E., & Zhang, X. (2022). A fusion method for multisource land cover products based on superpixels and statistical extraction for enhancing resolution and improving accuracy. Remote Sensing, 14(7), 1676. https://doi.org/10.3390/rs14071676
  • Kim, Y., Park, N.-W., & Lee, K.-D. (2017). Self-learning based land-cover classification using sequential class patterns from past land-cover maps. Remote Sensing, 9(9). https://doi.org/10.3390/rs9090921
  • Knorn, J., Rabe, A., Radeloff, V. C., Kuemmerle, T., Kozak, J., & Hostert, P. (2009). Land cover mapping of large areas using chain classification of neighboring landsat satellite images. Remote Sensing of Environment, 113(5), 957–964. https://doi.org/10.1016/j.rse.2009.01.010
  • Langford, Z. L., Kumar, J., Hoffman, F. M., Breen, A. L., & Iversen, C. M. (2019). Arctic vegetation mapping using unsupervised training datasets and convolutional neural networks. Remote Sensing, 11(1), 1–23. https://doi.org/10.3390/rs11010069
  • Leinenkugel, P., Deck, R., Huth, J., Ottinger, M., & Mack, B. (2019). The potential of open geodata for automated large-scale land use and land cover classification. Remote Sensing, 11(19), 2249. https://doi.org/10.3390/rs11192249
  • Li, E., Du, P., Samat, A., Xia, J., & Che, M. (2015). An automatic approach for urban land-cover classification from landsat-8 OLI data. International Journal of Remote Sensing, 36(24), 5983–6007. https://doi.org/10.1080/01431161.2015.1109726
  • Li, J., Gamba, P., & Plaza, A. (2014). A novel semi-supervised method for obtaining finer resolution urban extents exploiting coarser resolution maps. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(10), 4276–4287. https://doi.org/10.1109/JSTARS.2014.2355843
  • Li, C., Gong, P., Wang, J., Yuan, C., Hu, T., Wang, Q., Yu, L., Clinton, N., Li, M., Guo, J., Feng, D., Huang, C., Zhan, Z., Wang, X., Xu, B., Nie, Y., & Hackman, K. (2016). An all-season sample database for improving land-cover mapping of Africa with two classification schemes. International Journal of Remote Sensing, 37(19), 4623–4647. https://doi.org/10.1080/01431161.2016.1213923
  • Li, J., Huang, X., & Chang, X. (2020). A label-noise robust active learning sample collection method for multi-temporal urban land-cover classification and change analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 163(January), 1–17. https://doi.org/10.1016/j.isprsjprs.2020.02.022
  • Li, J., Huang, X., Hu, T., Jia, X., & Benediktsson, J. A. (2019). A novel unsupervised sample collection method for urban land-cover mapping using landsat imagery. IEEE Transactions on Geoscience and Remote Sensing, 57(6), 3933–3951. https://doi.org/10.1109/TGRS.2018.2889109
  • Li, H., Li, J., Zhao, Y., Gong, M., Zhang, Y., & Liu, T. (2021). Cost-sensitive self-paced learning with adaptive regularization for classification of image time series. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 11713–11727. https://doi.org/10.1109/JSTARS.2021.3127754
  • Li, C., Ma, Z., Wang, L., Yu, W., Tan, D., Gao, B., Feng, Q., Guo, H., & Zhao, Y. (2021). Improving the accuracy of land cover mapping by distributing training samples. Remote Sensing, 13(22). https://doi.org/10.3390/rs13224594
  • Lin, C., Du, P., Samat, A., Li, E., Wang, X., & Xia, J. (2019). Automatic updating of land cover maps in rapidly urbanizing regions by relational knowledge transferring from Globeland30. Remote Sensing, 11(12), 1397. https://doi.org/10.3390/rs11121397
  • Li, Q., Qiu, C., Ma, L., Schmitt, M., & Zhu, X. X. (2020). Mapping the land cover of Africa at 10 m resolution from multi-source remote sensing data with google earth engine. Remote Sensing, 12(4), 1–22. https://doi.org/10.3390/rs12040602
  • Liu, D., Chen, N., Zhang, X., Wang, C., & Du, W. (2020). Annual large-scale urban land mapping based on landsat time series in google earth engine and OpenStreetMap data: A case study in the middle Yangtze River basin. ISPRS Journal of Photogrammetry and Remote Sensing, 159, 337–351. https://doi.org/10.1016/j.isprsjprs.2019.11.021
  • Li, C., Wang, J., Wang, L., Hu, L., & Gong, P. (2014). Comparison of classification algorithms and training sample sizes in urban land classification with landsat thematic mapper imagery. Remote Sensing, 6(2), 964–983. https://doi.org/10.3390/rs6020964
  • Li, H., Wang, C., Zhong, C., Zhang, Z., & Liu, Q. (2017). Mapping typical urban LULC from landsat imagery without training samples or self-defined parameters. Remote Sensing, 9(7), 1–23. https://doi.org/10.3390/rs9070700
  • Li, C., Xian, G., Zhou, Q., & Pengra, B. W. (2021). A novel automatic phenology learning (APL) method of training sample selection using multiple datasets for time-series land cover mapping. Remote Sensing of Environment, 266, 266. https://doi.org/10.1016/j.rse.2021.112670
  • Ma, X., Tong, X., Liu, S., Luo, X., Xie, H., & Li, C. (2017). Optimized sample selection in SVM classification by combining with DMSP-OLS, landsat NDVI and GlobeLand30 products for extracting urban built-up areas. Remote Sensing, 9(3), 236. https://doi.org/10.3390/rs9030236
  • Maulik, U., & Chakraborty, D. (2013). Learning with transductive SVM for semisupervised pixel classification of remote sensing imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 77, 66–78. https://doi.org/10.1016/j.isprsjprs.2012.12.003
  • Maxwell, A. E., Warner, T. A., & Fang, F. (2018). Implementation of machine-learning classification in remote sensing: An applied review. International Journal of Remote Sensing, 39(9), 2784–2817. https://doi.org/10.1080/01431161.2018.1433343
  • Mellor, A., Boukir, S., Haywood, A., & Jones, S. (2015). Exploring issues of training data imbalance and mislabelling on random forest performance for large area land cover classification using the ensemble margin. ISPRS Journal of Photogrammetry and Remote Sensing, 105, 155–168. https://doi.org/10.1016/j.isprsjprs.2015.03.014
  • Naboureh, A., Li, A., Bian, J., Lei, G., & Amani, M. (2020). A hybrid data balancing method for classification of imbalanced training data within google earth engine: Case studies from mountainous regions. Remote Sensing, 12(20), 1–21. https://doi.org/10.3390/rs12203301
  • Nguyen, L. H., Joshi, D. R., Clay, D. E., & Henebry, G. M. (2020). Characterizing land cover/land use from multiple years of landsat and MODIS time series: A novel approach using land surface phenology modeling and random forest classifier. Remote Sensing of Environment, 238, 111017. https://doi.org/10.1016/j.rse.2018.12.016
  • Paris, C., & Bruzzone, L. (2021). A novel approach to the unsupervised extraction of reliable training samples from thematic products. IEEE Transactions on Geoscience and Remote Sensing, 59(3), 1930–1948. https://doi.org/10.1109/TGRS.2020.3001004
  • Paris, C., Gasparella, L., & Bruzzone, L. (2022). A scalable high-performance unsupervised system for producing large-scale High Resolution (HR) land cover Maps: The Italian Country Case Study. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 9146–9159. https://doi.org/10.1109/JSTARS.2022.3209902
  • Pelletier, C., Valero, S., Inglada, J., Champion, N., Sicre, C. M., & Dedieu, G. (2017). Effect of training class label noise on classification performances for land cover mapping with satellite image time series. Remote Sensing, 9(2). https://doi.org/10.3390/rs90201739
  • Pierdicca, N., Chini, M., & Pelliccia, F. (2014). The contribution of SIASGE radar data integrated with optical images to support thematic mapping at regional scale. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(7), 2821–2833. https://doi.org/10.1109/JSTARS.2014.2330744
  • Preidl, S., Lange, M., & Doktor, D. (2020). Introducing APiC for regionalised land cover mapping on the national scale using sentinel-2A imagery. Remote Sensing of Environment, 240, 111673. https://doi.org/10.1016/j.rse.2020.111673
  • Radoux, J., Lamarche, C., Van Bogaert, E., Bontemps, S., Brockmann, C., & Defourny, P. (2014). Automated training sample extraction for global land cover mapping. Remote Sensing, 6(5), 3965–3987. https://doi.org/10.3390/rs6053965
  • Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., & Rigol-Sanchez, J. P. (2012). An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67(1), 93–104. https://doi.org/10.1016/j.isprsjprs.2011.11.002
  • Rybicki, M., Gromny, E., Malinowski, R., Lewiński, S., Jenerowicz, M., Michał, K., Nowakowski, A., Wojtkowski, C., Krupiński, M., Kraetzschmar, E., & Schauer, P. (2020). Automated production of a land cover/use map of Europe based on sentinel-2 imagery. Remote Sensing, 12(3523), 1–25. https://doi.org/10.3390/rs12213523
  • Santos, L. A., Ferreira, K. R., Camara, G., Picoli, M. C. A., & Simoes, R. E. (2021). Quality control and class noise reduction of satellite image time series. ISPRS Journal of Photogrammetry and Remote Sensing, 177, 75–88. https://doi.org/10.1016/j.isprsjprs.2021.04.014
  • Shao, Y., & Lunetta, R. S. (2012). Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRS Journal of Photogrammetry and Remote Sensing, 70, 78–87. https://doi.org/10.1016/j.isprsjprs.2012.04.001
  • Shetty, S., Gupta, P. K., Belgiu, M., & Srivastav, S. K. (2021). Assessing the effect of training sampling design on the performance of machine learning classifiers for land cover mapping using multi-temporal remote sensing data and Google earth engine. Remote Sensing, 13(8), 1433. https://doi.org/10.3390/rs13081433
  • Song, X., Duan, Z., & Jiang, X. (2012). Comparison of artificial neural networks and support vector machine classifiers for land cover classification in Northern China using a SPOT-5 HRG image. International Journal of Remote Sensing, 33(10), 3301–3320. https://doi.org/10.1080/01431161.2011.568531
  • Stehman, S. V., & Foody, G. M. (2019). Key issues in rigorous accuracy assessment of land cover products. Remote Sensing of Environment, 231, 111199. https://doi.org/10.1016/j.rse.2019.05.018
  • Sun, X., Li, L., Zhang, B., Chen, D., & Gao, L. (2015). Soft urban water cover extraction using mixed training samples and support vector machines. International Journal of Remote Sensing, 36(13), 3331–3344. https://doi.org/10.1080/01431161.2015.1042594
  • Talukdar, S., Singha, P., Mahato, S., Shahfahad, Pal, S., Liou, Y. A., & Rahman, A. (2020). Land-use land-cover classification by machine learning classifiers for satellite observations—a review. Remote Sensing, 12(7), 1135. https://doi.org/10.3390/rs12071135
  • Tong, X. Y., Xia, G. S., Lu, Q., Shen, H., Li, S., You, S., & Zhang, L. (2020). Land-cover classification with high-resolution remote sensing images using transferable deep models. Remote Sensing of Environment, 237, 111322. https://doi.org/10.1016/j.rse.2019.111322
  • Tong, X. Y., Xia, G. S., & Zhu, X. X. (2023). Enabling country-scale land cover mapping with meter-resolution satellite imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 196, 178–196. https://doi.org/10.1016/j.isprsjprs.2022.12.011
  • Tuia, D., Persello, C., & Bruzzone, L. (2016). Domain adaptation for the classification of remote sensing data: An overview of recent advances. IEEE Geoscience and Remote Sensing Magazine, 4(2), 41–57. https://doi.org/10.1109/MGRS.2016.2548504
  • Tuia, D., Volpi, M., Copa, L., Kanevski, M., & Muñoz-Marí, J. (2011). A survey of active learning algorithms for supervised remote sensing image classification. IEEE Journal on Selected Topics in Signal Processing, 5(3), 606–617. https://doi.org/10.1109/JSTSP.2011.2139193
  • Venter, Z. S., & Sydenham, M. A. K. (2021). Continental-scale land cover mapping at 10 m resolution over Europe (Elc10). Remote Sensing, 13(12), 2301. https://doi.org/10.3390/rs13122301
  • Viana, C. M., Girão, I., & Rocha, J. (2019). Long-term satellite image time-series for land use/land cover change detection using refined open source data in a rural region. Remote Sensing, 11(9), 1104. https://doi.org/10.3390/rs11091104
  • Wang, S., DiTommaso, S., Faulkner, J., Friedel, T., Kennepohl, A., Strey, R., & Lobell, D. B. (2020). Mapping crop types in southeast India with smartphone crowdsourcing and deep learning. Remote Sensing, 12(18), 1–42. https://doi.org/10.3390/RS12182957
  • Wang, J., Li, C., Hu, L., Zhao, Y., Huang, H., & Gong, P. (2015). Seasonal Land Cover Dynamics in Beijing derived from landsat 8 data using a spatio-temporal contextual approach. Remote Sensing, 7(1), 865–881. https://doi.org/10.3390/rs70100865
  • Wessels, K. J., Bergh, F., Roy, D. P., Salmon, B. P., Steenkamp, K. C., MacAlister, B., Swanepoel, D., & Jewitt, D. (2016). Rapid land cover map updates using change detection and robust random forest classifiers. Remote Sensing, 8(11), 888. https://doi.org/10.3390/rs8110888
  • Wulder, M. A., Coops, N. C., Roy, D. P., White, J. C., & Hermosilla, T. (2018). Land cover 2.0. International Journal of Remote Sensing, 39(12), 4254–4284. https://doi.org/10.1080/01431161.2018.1452075
  • Wulder, M. A., White, J. C., Goward, S. N., Masek, J. G., Irons, J. R., Herold, M., Cohen, W. B., Loveland, T. R., & Woodcock, C. E. (2008). Landsat continuity: Issues and opportunities for land cover monitoring. Remote Sensing of Environment, 112(3), 955–969. https://doi.org/10.1016/j.rse.2007.07.004
  • Xie, S., Liu, L., & Yang, J. (2020). Time-series model-adjusted percentile features: Improved percentile features for land-cover classification based on landsat data. Remote Sensing, 12(18), 3091. https://doi.org/10.3390/RS12183091
  • Xie, S., Liu, L., Zhang, X., Yang, J., Chen, X., & Gao, Y. (2019). Automatic land-cover mapping using landsat time-series data based on google earth engine. Remote Sensing, 11(24), 3023. https://doi.org/10.3390/rs11243023
  • Yang, L., Jin, S., Danielson, P., Homer, C., Gass, L., Bender, S. M., Case, A., Costello, C., Dewitz, J., Fry, J., Funk, M., Granneman, B., Liknes, G. C., Rigge, M., & Xian, G. (2018). A new generation of the United States national land cover database: Requirements, research priorities, design, and implementation strategies. ISPRS Journal of Photogrammetry and Remote Sensing, 146, 108–123. https://doi.org/10.1016/j.isprsjprs.2018.09.006
  • Ye, M., Qian, Y., Zhou, J., & Tang, Y. Y. (2017). Dictionary learning-based feature-level domain adaptation for cross-scene hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 55(3), 1544–1562. https://doi.org/10.1109/TGRS.2016.2627042
  • Yifang, B., Gong, P., & Gini, C. (2015). Global land cover mapping using Earth observation satellite data: Recent progresses and challenges. ISPRS Journal of Photogrammetry and Remote Sensing, 103(1), 1–6. https://doi.org/10.1016/j.isprsjprs.2015.01.001
  • Zeng, S., Wang, Z., Gao, C., Kang, Z., & Feng, D. (2018). Hyperspectral image classification with global-local discriminant analysis and spatial-spectral context. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(12), 5005–5018. https://doi.org/10.1109/JSTARS.2018.2878336
  • Zeng, T., Wang, L., Zhang, Z., Wen, Q., Wang, X., & Yu, L. (2019). An integrated land cover mapping method suitable for low-accuracy areas in global land cover maps. Remote Sensing, 11(15), 1777. https://doi.org/10.3390/rs11151777
  • Zhang, J., Fu, Z., Zhu, Y., Wang, B., Sun, K., & Zhang, F. (2023). A high-performance automated large-area land cover mapping framework. Remote Sensing, 15(12), 1–22. https://doi.org/10.3390/rs15123143
  • Zhang, H. K., & Roy, D. P. (2017). Using the 500 m MODIS land cover product to derive a consistent continental scale 30 m landsat land cover classification. Remote Sensing of Environment, 197, 15–34. https://doi.org/10.1016/j.rse.2017.05.024
  • Zhang, Z., Tang, P., Hu, C., Liu, Z., Zhang, W., & Tang, L. (2022). Seeded classification of satellite image time series with lower-bounded dynamic time warping. Remote Sensing, 14(12), 1–25. https://doi.org/10.3390/rs14122778
  • Zhang, Q., Zhang, Z., Xu, N., & Li, Y. (2023). Fully automatic training sample collection for detecting multi-decadal inland/seaward urban sprawl. Remote Sensing of Environment, 298(February), 113801. https://doi.org/10.1016/j.rse.2023.113801
  • Zhao, Y., Feng, D., Yu, L., Wang, X., Chen, Y., Bai, Y., Hernández, H. J., Galleguillos, M., Estades, C., Biging, G. S., Radke, J. D., & Gong, P. (2016). Detailed dynamic land cover mapping of Chile: Accuracy improvement by integrating multi-temporal data. Remote Sensing of Environment, 183, 170–185. https://doi.org/10.1016/j.rse.2016.05.016
  • Zhong, B., Yang, A., Jue, K., & Wu, J. (2021). Long time series high-quality and high-consistency land cover mapping based on machine learning method at heihe river basin. Remote Sensing, 13(8), 1596. https://doi.org/10.3390/rs13081596
  • Zhou, Q., Tollerud, H., Barber, C., Smith, K., & Zelenak, D. (2020). Training data selection for annual land cover classification for the Land Change Monitoring, Assessment, And Projection (LCMAP) Initiative. Remote Sensing, 12(4), 699. https://doi.org/10.3390/rs12040699
  • Zhu, Z., Gallant, A. L., Woodcock, C. E., Pengra, B., Olofsson, P., Loveland, T. R., Jin, S., Dahal, D., Yang, L., & Auch, R. F. (2016). Optimizing selection of training and auxiliary data for operational land cover classification for the LCMAP initiative. ISPRS Journal of Photogrammetry and Remote Sensing, 122, 206–221. https://doi.org/10.1016/j.isprsjprs.2016.11.004
  • Zhu, Q., Wang, Y., Liu, J., Li, X., Pan, H., & Jia, M. (2021). Tracking historical wetland changes in the china side of the amur river basin based on landsat imagery and training samples migration. Remote Sensing, 13(11), 2161. https://doi.org/10.3390/rs13112161