271
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Modeling structural traits of Aleppo pine (Pinus halepensis Mill.) forests with low-density LiDAR

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2344569 | Received 13 Oct 2023, Accepted 15 Apr 2024, Published online: 09 May 2024

References

  • Abadie, J., Dupouey, J. L., Avon, C., Rochel, X., Tatoni, T., & Bergès, L. (2018). Forest recovery since 1860 in a Mediterranean region: Drivers and implications for land use and land cover spatial distribution. Landscape Ecology, 33(2), 289–19. https://doi.org/10.1007/s10980-017-0601-0
  • Adhikari, A. C., Montes, R., & Peduzzi, A. (2023). A comparison of modeling methods for predicting forest attributes using lidar metrics. Remote Sensing, 15(5), 1284. https://doi.org/10.3390/rs15051284
  • Alvarez, A., Gracia, M., Vayreda, J., & Retana, J. (2012). Patterns of fuel types and crown fire potential in pinus halepensis forests in the western Mediterranean basin. Forest Ecology and Management, 270(April), 282–290. https://doi.org/10.1016/j.foreco.2011.01.039
  • Arnaez, J., Lasanta, T., Errea, M. P., & Ortigosa, L. (2011). Land abandonment, landscape evolution, and soil erosion in a Spanish Mediterranean mountain region: The case of Camero Viejo. Land Degradation & Development, 22, 537–550. https://doi.org/10.1002/ldr.1032
  • Assman, E. (1970). The principles of forest yield study. Pergamon Press.
  • Bater, C. W., Wulder, M. A., Coops, N. C., Nelson, R. F., Hilker, T., & Næsset, E. (2011). Stability of sample-based scanning-LiDAR-derived vegetation metrics for forest monitoring. IEEE Transactions on Geoscience and Remote Sensing, 49(6 PART 2), 2385–2392. https://doi.org/10.1109/TGRS.2010.2099232
  • Bergseng, E., Ørka, H. O., Næsset, E., & Gobakken, T. (2015). Assessing forest inventory information obtained from different inventory approaches and remote sensing data sources. Annals of Forest Science, 72(1), 33–45. https://doi.org/10.1007/s13595-014-0389-x
  • Brunet-Navarro, P., Hermoso, E., Sánchez-González, M., Luengo, E., Gilabert Sanz, S., Monleón Doménech, M., Mandrara Z., Lanvin J. D., Gominho, J., & Oliver-Villanueva, J. (2022). An innovative construction system made from local mediterranean natural resources. XV World Forestry Congress: Building a green, healthy and resilient future with forests, Seoul, South Korea (p. 9). FAO.
  • Cabanillas-Saldaña, A. M. (2010). Bases para la gestión de masas naturales de Pinus halepensis Mill. en el Valle del Ebro [ PhD diss. E.T.S.I]. Montes [antigua denominación] Universidad Politécnica de Madrid. Retrieved July 11, 2023. https://doi.org/10.20868/UPM.thesis.4960.
  • Cao, L., Coops, N. C., Hermosilla, T., Innes, J., Dai, J., & She, G. (2014). Using small-footprint discrete and full-waveform airborne lidar metrics to estimate total biomass and biomass components in subtropical forests. Remote Sensing, 6(8), 7110–7135. https://doi.org/10.3390/rs6087110
  • Cao, L., Liu, H., Fu, X., Zhang, Z., Shen, X., & Ruan, H. (2019). Comparison of UAV LiDAR and digital aerial photogrammetry point clouds for estimating forest structural attributes in subtropical planted forests. Forests, 10(2), 145. https://doi.org/10.3390/f10020145
  • Caudullo, G., Welk, E., & San-Miguel-Ayanz, J. (2017). Chorological maps for the main European woody species. Data in Brief, 12, 662–666. https://doi.org/10.1016/j.dib.2017.05.007
  • Centre de Recerca Ecològica i Aplicacions Forestals, Institut Cartogràfic i Geològic de Catalunya, Departament d’Agricultura, Ramaderia, Pesca i Alimentació. (2021). Mapes de Variables Biofísiques de l’arbrat de Catalunya. Retrieved July 11, 2023, from. https://www.icgc.cat/Administracio-i-empresa/Descarregues/Capes-de-geoinformacio/Mapes-de-variables-biofisiques-de-l-arbrat-de-Catalunya.
  • Chen, W., Hu, X., Chen, W., Hong, Y., & Yang, M. (2018). Airborne LiDAR remote sensing for individual tree forest inventory using trunk detection-aided mean shift clustering techniques. Remote Sensing, 10(1), 7. https://doi.org/10.3390/rs10071078
  • Coops, N. C., Tompalski, P., Goodbody, T. R. H., Queinnec, M., Luther, J. E., Bolton, D. K., White, J. C., Wulder, M. A., van Lier, O. R., & Hermosilla, T. (2021). Modelling lidar-derived estimates of forest attributes over space and time: A review of approaches and future trends. Remote Sensing of Environment, 260, 112477. https://doi.org/10.1016/j.rse.2021.112477
  • Daniels, R. R., Taylor, R. S., Serra-Varela, M. J., Vendramin, G. G., González-Martínez, S. C., & Grivet, D. (2018). Inferring selection in instances of long-range colonization: The aleppo pine (pinus halepensis) in the Mediterranean basin. Molecular Ecology, 27(16), 3331–3345. https://doi.org/10.1111/mec.14786
  • Delgado-Artés, R., Garófano-Gómez, V., Oliver-Villanueva, J. V., & Rojas-Briales, E. (2022). Land use/cover change analysis in the Mediterranean region: A regional case study of forest evolution in Castelló (Spain) over 50 years. Land Use Policy, 114(March), 105967. https://doi.org/10.1016/j.landusepol.2021.105967
  • Djuma, H., Bruggeman, A., Zissimos, A., Christoforou, I., Eliades, M., & Zoumides, C. (2020). The effect of agricultural abandonment and mountain terrace degradation on soil organic carbon in a Mediterranean landscape. Catena, 195, 104741. https://doi.org/10.1016/j.catena.2020.104741
  • Domingo, D., Alonso Ponce, R., Lamelas, M., Montealegre, A., Rodríguez-Puerta, F., & Riva, J. (2019). Temporal transferability of pine forest attributes modeling using low-density airborne laser scanning data. Remote Sensing, 11(3), 261. https://doi.org/10.3390/rs11030261
  • Domingo, D., Lamelas, M. T., Montealegre, A. L., García-Martín, A., & De la Riva, J. (2018). Estimation of total biomass in aleppo pine forest stands applying parametric and nonparametric methods to low-density airborne laser scanning data. Forests, 9(4), 158. https://doi.org/10.3390/f9040158
  • Domingo, D., Montealegre, A. L., Lamelas, M. T., García-Martín, A., de la Riva, J., Rodríguez, F., & Alonso, R. (2019). Quantifying forest residual biomass in pinus halepensis Miller stans using airborne laser scanning data. GIScience and Remote Sensing, 56(8), 1210–1232. https://doi.org/10.1080/15481603.2019.1641653
  • Dounavi, A., Koutsias, N., & Panetsos, K. (2001). Natural interspecific hybridization between pinus brutia (Ten.) and pinus halepensis (Mill.), verified by using the logistic regression modeling on morphological characters. Forest Genetics, 8(2), 151–158.
  • Elaieb, M. T., Shel, F., Elouellani, S., Janah, T., Rahouti, M., Thevenon, M. F., & Candelier, K. (2017). Physical, mechanical and natural durability properties of wood from reforestation pinus halepensis mill. In the Mediterranean basin. Bois et Forêts des Tropiques, 331(1), 19–31. https://doi.org/10.19182/bft2017.331.a31323
  • Farjon, A. (2010). A handbook of the world’s conifers. Brill.
  • Fekety, P. A., Falkowski, M. J., Hudak, A. T., Jain, T. B., & Evans, J. S. (2018). Transferability of lidar-derived basal area and stem density models within a northern Idaho ecoregion. Canadian Journal of Remote Sensing, 44(2), 131–143. https://doi.org/10.1080/07038992.2018.1461557
  • Fernández-Landa, A., Fernández-Moya, J., Tomé, J., Abarquero, N. A., Guillen-Climent, M., Vallejo, R., Sandoval, V., & Marchamalo, M. (2018). High resolution forest inventory of pure and mixed stands at regional level combining national forest inventory field plots, landsat, and Low Density Lidar. International Journal of Remote Sensing, 39(January), 4830–4844. https://doi.org/10.1080/01431161.2018.1430406
  • García, O., & Batho, A. (2005). Top height estimation in lodgepole pine sample plots. Western Journal of Applied Forestry, 20(1), 64–68. https://doi.org/10.1093/WJAF/20.1.64
  • Gil, F. T. M. (2002). The restoration of the vegetation cover in Semi-Arid Zones Based on the spatial pattern of biotic and abiotic factors [ PhD diss]. Universidad de Alicante. Aaccessed July 11, 2023. https://rua.ua.es/dspace/bitstream/10045/10089/1/Maestre-Gil-Fernando-Tomas.pdf.
  • González-Ferreiro, E., Diéguez-Aranda, U., & Miranda, D. (2012). Estimation of stand variables in pinus radiata D. Don plantations using different LiDAR pulse densities. Forestry: An International Journal of Forest Research, 85(2), 281–292. https://doi.org/10.1093/forestry/cps002
  • Gopalakrishnan, R., Kauffman, J. S., Fagan, M. E., Coulston, J. W., Thomas, V. A., Wynne, R. H., & Fox, T. R., Quirino, VF. (2019). Creating landscape-scale site index maps for the Southeastern US is possible with airborne LiDAR and landsat imagery. Forests, 10(3), 234. https://doi.org/10.3390/F10030234
  • Green, P. C., Burkhart, H. E., Coulston, J. W., & Radtke, P. J. (2019). A novel application of small area estimation in loblolly pine forest inventory. Forestry: An International Journal of Forest Research, 93(3), 444–457. https://doi.org/10.1093/forestry/cpz073
  • Guerra-Hernández, J., Arellano-Pérez, S., González-Ferreiro, E., Pascual, A., Sandoval Altelarrea, V., Ruiz-González, A. D., & Álvarez-González, J. G. (2021). Developing a site index Model for P. Pinaster stands in NW Spain by combining Bi-temporal ALS data and environmental data. Forest Ecology and Management, 481, 118690. https://doi.org/10.1016/j.foreco.2020.118690
  • Hall, S. A., Burke, I. C., Box, D. O., Kaufmann, M. R., & Stoker, J. M. (2005). Estimating stand structure using Discrete-Return Lidar: An example from low density, fire prone ponderosa pine forests. Forest Ecology and Management, 208(1–3), 189–209. https://doi.org/10.1016/j.foreco.2004.12.001
  • Harrell, F. E. (2023). _rms: “Regression Modeling Strategies”. R package version 6.5-0. https://CRAN.R-project.org/package=rms
  • Hennigar, C., Weiskittel, A., Allen, H. L., & Maclean, D. A. (2016). Development and evaluation of a biomass increment based index for site productivity. Canadian Journal of Forest Research, 47(3), 400–410. https://doi.org/10.1139/cjfr-2016-0330
  • Hernández, Á., Arellano, E. C., Morales-Moraga, D., & Miranda, M. C. (2016). Understanding the effect of three decades of land use change on soil quality and biomass productivity in a Mediterranean Landscape in Chile. Catena, 140, 195–204. https://doi.org/10.1016/j.catena.2016.01.029
  • Hui, Z., Cheng, P., Yang, B., & Zhou, G. (2022). “Multi-level self-adaptive individual tree detection for coniferous forest using airborne LiDAR.” International Journal of Applied Earth Observations and Geoinformation, 114, 103028. https://doi.org/10.1016/j.jag.2022.103028
  • Hyyppä, J., Hyyppä, H., Leckie, D., Gougeon, F. A., Yu, X., & Maltamo, M. (2008). Review of methods of Small‐footprint airborne laser scanning for extracting forest inventory data in boreal forests. International Journal of Remote Sensing, 29(5), 1339–1366. https://doi.org/10.1080/01431160701736489
  • Isenburg. (2020). Lastools: Efficient LiDAR processing software. V. 200101, 743. Retrieved July 11, 2023, from http://rapidlasso.com/LAStools
  • Jakubowski, M. K., Guo, Q., & Kelly, M. (2013). Tradeoffs Between lidar pulse density and forest measurement accuracy. Remote Sensing of Environment, 130, 245–253. https://doi.org/10.1016/j.rse.2012.11.024
  • Jeong, J. H., Resop, J. P., Mueller, N. D., Fleisher, D. H., Yun, K., Butler, E. E., Timlin, D. J., Shim, K. M., Gerber, J. S., Reddy, V. R., & Kim, S.-H. (2016). Random forests for global and regional crop yield predictions. PLOS ONE, 3(6), e0156571. https://doi.org/10.1371/journal.pone.0156571
  • Kangas, A., Gobakken, T., Puliti, S., Hauglin, M., & Naesset, E. (2018). Value of airborne laser scanning and digital aerial photogrammetry data in forest decision making. Silva Fennica, 52(1), 9923. https://doi.org/10.14214/sf.9923
  • Kankare, V. M., Holopainen, V. M., Räty, M., Yu, X., Hyyppä, J., Hyyppä, H., Alho, P., & Viitala R. (2013). Remote sensing retrieval of forest aboveground biomass and stem volume with airborne scanning LiDAR. Remote Sensing, 5, 2257–2274. https://doi.org/10.3390/rs5052257
  • Kellner, J. R., Armston, J., Birrer, M., Cushman, K. C., Duncanson, L., Eck, C., Falleger, C., Imbach, B., Král, K., Krůček, M., Trochta, J., Vrška, T., & Zgraggen, C. (2019). New opportunities for forest remote sensing through ultra-high-density drone lidar. Surveys in Geophysics, 40(4), 959–977. https://doi.org/10.1007/s10712-019-09529-9
  • Ke, Y., & Quackenbush, L. J. (2011). A review of methods for automatic individual tree-crown detection and delineation from passive remote sensing. International Journal of Remote Sensing, 32(17), 4725–4747. https://doi.org/10.1080/01431161.2010.494184
  • Korhonen, L., Korpela, I., Heiskanen, J., & Maltamo, M. (2011). Airborne discrete-return LIDAR data in the estimation of vertical canopy cover, angular canopy closure and leaf area index. Remote Sensing of Environment, 115(4), 1065–1080. https://doi.org/10.1016/j.rse.2010.12.011
  • Kouba, Y., Martínez-García, F., & Alados, C. L. (2015). Effects of previous land-use on plant species composition and diversity in Mediterranean forests. PLOS ONE, 10(9), e0139031. https://doi.org/10.1371/journal.pone.0139031
  • Laurin, G. V., Puletti, N., Grotti, M., Stereńczak, K., Modzelewska, A., Lisiewicz, M., Sadkowski, R., Kuberski, Ł., Chirici, G., & Papale, D. (2020). Species dominance and above ground biomass in the białowieża forest, Poland, described by airborne hyperspectral and lidar data. International Journal of Applied Earth Observation and Geoinformation, 97, 102178. https://doi.org/10.1016/j.jag.2020.102178
  • Lerma-Arce, V., Oliver-Villanueva, J. V., Segura-Orenga, G., & Urchueguia-Schölzel, J. F. (2021). Comparison of alternative harvesting systems for selective thinning in a Mediterranean pine afforestation (pinus Halepensis Mill.) for bioenergy use. IForest – Biogeosciences and Forestry, 14(5), 465–472. https://doi.org/10.3832/IFOR3636-014
  • Li, A., Dhakal, S., Glenn, N. F., Spaete, L. P., Shinneman, D. J., Pilliod, D. S., Arkle, S., & McIlroy, S. K. (2017). Lidar aboveground vegetation biomass estimates in Shrublands: Prediction, uncertainties and application to coarser scales. Remote Sensing, 9(9), 903. https://doi.org/10.3390/rs9090903
  • Li, L., Guo, Q., Tao, S., Kelly, M., & Xu, G. (2015). Lidar with multi-temporal MODIS provide a means to upscale predictions of forest biomass. ISPRS Journal of Photogrammetry and Remote Sensing, 102, 198–208. https://doi.org/10.1016/j.isprsjprs.2015.02.007
  • MAGRAMA - Ministerio de Agricultura, Alimentación y Medio Ambiente. (2012). 4th Spanish national forest inventory. Dirección General de Desarrollo Rural y Política Forestal, Área de Inventario y Estadísticas Forestales.
  • Marino, E., Tomé, J. L., Hernando, C., Guijarro, M., & Madrigal, J. (2022). Transferability of airborne LiDAR data for canopy fuel mapping: Effect of pulse density and Model formulation. Fire, 5(5), 126. https://doi.org/10.3390/fire5050126
  • Marschall, J. (1992). Hilfstafeln für die Forsteinrichtung (5th ed.). Österreichischer Agrarverlag.
  • Mauri, A., diLeo, M., de Rigo, D., & Caudullo, G. E. (2016). Pinus Halepensis and Pinus Brutia in Europe: Distribution, habitat, usage and threats. European Atlas of Forest Tree Species. Retrieved July 11, 2023, from. https://forest.jrc.ec.europa.eu/media/atlas/Pinus_halepensis_brutia.pdf.
  • Mauro, F., Hudak, A. T., Fekety, P. A., Frank, B., Temesgen, H., Bell, D. M., Gregory, M. J., & McCarley, TR. (2021). Remote sensing regional modeling of forest fuels and structural attributes using airborne laser scanning data in Oregon. Remote Sensing, 13(2), 261. https://doi.org/10.3390/rs13020261
  • Mòdol, E. C., & Casals, M. V. (2012). Properties of clear wood and Structural Timber of Pinus halepensis from North-Eastern Spain. In Proceedings of the World Conference on Timber Engineering (pp. 251–254), Auckland, New Zealand.
  • Montero, G., Cañellas, I., & Ruíz-Peinado, R. (2001). Growth and yield models for pinus halepensis mill. Investigacioines Agrarias: Sistemas y Recursos Forestales, 10(1), 179–201. https://doi.org/10.5424/720
  • Nord-Larsen, T., & Riis-Nielsen, T. (2010). Developing an airborne laser scanning dominant height Model from a countrywide scanning survey and national forest inventory data. Scandinavian Journal of Forest Research, 25(3), 262–272. https://doi.org/10.1080/02827581.2010.486000
  • Oh, S., Jung, J., Shao, G., Shao, G., Gallion, J., & Fei, S. (2022). High-resolution canopy height Model generation and validation using USGS 3DEP LiDAR data in Indiana, USA. Remote Sensing, 14(4), 935. https://doi.org/10.3390/rs14040935
  • Özçelik, R., Cao, Q. V., Trincado, G., & Göçer, N. (2018). Predicting tree height from tree diameter and dominant height using mixed-effects and quantile regression models for two species in Turkey. Forest Ecology and Management, 419–420, 240–248. https://doi.org/10.1016/j.foreco.2018.03.051
  • Packalen, P., Strunk, J., Packalen, T., Maltamo, M., & Mehtätalo, L. (2019). Resolution dependence in an area-based approach to forest inventory with airborne laser scanning. Remote Sensing of Environment, 224, 192–201. https://doi.org/10.1016/j.rse.2019.01.022
  • Pardé, J., & Bouchon, J. (1994). Dasometría (p. 387). Madrid: Editoriales Paranimfo.
  • Pausas, J. G., Ribeiro, E., & Vallejo, R. (2004). Post-fire regeneration variability of Pinus Halepensis in the Eastern Iberian Peninsula. Forest Ecology and Management, 203, 251–259. https://doi.org/10.1016/j.foreco.2004.07.061
  • PDAL Contributors. (2020). PDAL Point Data Abstraction Library. Python package. Retrieved July 11, 2023 from https://doi.org/10.5281/zenodo.2556737
  • Pearse, G. D., Watt, M. S., Dash, J. P., Stone, C., & Caccamo, G. (2019). Comparison of models describing forest inventory attributes using standard and voxel-based lidar predictors across a range of pulse densities. International Journal of Applied Earth Observation and Geoinformation, 78, 341–351. https://doi.org/10.1016/j.jag.2018.10.008
  • Peñuelas, J., Sardans, J., Filella, I., Estiarte, M., Llusià, J., Ogaya, R., Carnicer, J., Bartrons M, Rivas-Ubach A, Grau O, & Peguero G. (2017). Impacts of global change on mediterranean forests and their services. Forests, 8(12), 463. https://doi.org/10.3390/f8120463
  • Praciak, A. (2013). The CABI encyclopedia of forest trees. CABI.
  • Prior, E. M., Thomas, V. A., & Wynne, R. H. (2022). Estimation of mean dominant height using NAIP digital aerial photogrammetry and lidar over mixed deciduous forest in the southeastern USA. International Journal of Applied Earth Observation and Geoinformation, 110, 102813. https://doi.org/10.1016/j.jag.2022.102813
  • Rennolls, K. (1978). Top height: Its definition and estimation. The Commonwealth Forestry Review, 57(3), 215–219. https://www.jstor.org/stable/42607466
  • Ribas-Costa, V. A., & Dopazo, C. (2020). El aprovechamiento de madera teosa de Pinus halepensis Mill. y los hornos de alquitrán en Ibiza (Islas Baleares). Cuadernos de la Sociedad Española de Ciencias Forestales, 46(1), 139–160. https://doi.org/10.31167/csecfv0i46.19885
  • Ritz, A. L., Thomas, V. A., Wynne, R. H., Green, P. C., Schroeder, T. A., Albaugh, T. J., Burkhart, H. E., Carter, D. R., Cook, R. L., Campoe, O. C., Rubilar, R. A., & Rakestraw, J. (2022). Assessing the utility of NAIP digital aerial photogrammetric point clouds for estimating canopy height of managed loblolly pine plantations in the southeastern United States. International Journal of Applied Earth Observation and Geoinformation, 113, 103012. https://doi.org/10.1016/j.jag.2022.103012
  • Rojas-Briales, E., Oliver-Villanueva, J. V., Lerma-Arce, V., Fuente, D., & Lorenzo-Sáez, E. (2023). Improving sustainable forest management of Pinus Halepensis Mill. Mid-Aged Stands in a context of rural abandonment, climate change, and wildfires. Forests, 14(3), 527. https://doi.org/10.3390/f14030527
  • Ruiz-Peinado, R., Del Rio, M., & Montero, G. (2011). New models for estimating the carbon sink capacity of Spanish softwood species. Forest Systems, 20(1), 176–188. https://doi.org/10.5424/fs/2011201-11643
  • Rusu, R. B., Csaba Marton, Z., Blodow, N., Dolha, M., & Beetz, M. (2008). Towards 3D point cloud based object maps for household environments. Robotics and Autonomous Systems, 56(11), 927–941. https://doi.org/10.1016/J.ROBOT.2008.08.005
  • Sánchez, J. G. (2018). Archaeological LiDAR in Italy: Enhancing research with publicly accessible data. Antiquity, 92(364), e4. https://doi.org/10.15184/aqy.2018.147
  • Sharma, M., Amateis, R., & Burkhart, H. (2002). Top height definition and its effect on site index determination in thinned and unthinned loblolly pine plantations. Forest Ecology and Management, 168(1–3), 163–175. https://doi.org/10.1016/S0378-1127(01)00737-X
  • Silva, C. A., Hudak, A. T., Klauberg, C., Vierling, L. A., Gonzalez-Benecke, C., de Padua Chaves Carvalho, S., Rodriguez, L. C. E., & Cardil, A. (2017). Combined effect of pulse density and grid cell size on predicting and mapping aboveground carbon in fast-growing eucalyptus forest plantation using airborne LiDAR data. Carbon Balance and Management, 12(1), 1–16. https://doi.org/10.1186/s13021-017-0081-1
  • Skovsgaard, J. P., & Vanclay, J. K. (2008). Forest site productivity: A review of the evolution of dendrometric concepts for even-aged stands. Forestry: An International Journal of Forest Research, 81(1), 13–31. https://doi.org/10.1093/forestry/cpm041
  • Stanchi, S., Freppaz, M., Agnelli, A., Reinsch, T. G., & Zanini, E. (2012). Properties, best management practices and conservation of terraced soils in southern europe (from mediterranean areas to the alps): A review. Quaternary International, 265, 90–100. https://doi.org/10.1016/J.QUAINT.2011.09.015
  • Steyerberg, E. W., Harrell, F. E., Borsboom, G. J. J. M., Eijkemans, M. J. C., Vergouwe, Y., & Habbema, J. D. F. (2001). Internal validation of predictive models: Efficiency of some procedures for logistic regression analysis. Journal of Clinical Epidemiology, 54(8), 774–781. https://doi.org/10.1016/S0895-4356(01)00341-9
  • Strunk, J., Temesgen, H., Andersen, H. E., Flewelling, J. P., & Madsen, L. (2012). Effects of lidar pulse density and sample size on a model-assisted approach to estimate forest inventory variables. Canadian Journal of Remote Sensing, 38(5), 644–654. https://doi.org/10.5589/m12-052
  • Subedi, S., & Fox, T. R. (2016). Predicting loblolly pine site index from soil properties using partial least-squares regression. Forest Science, 62(4), 449–456. https://doi.org/10.5849/forsci.15-127
  • Sumida, A., Miyaura, T., & Torii, H. (2013). Relationships of tree height and diameter at breast height revisited: Analyses of stem growth using 20-year data of an even-aged chamaecyparis obtusa stand. Tree Physiology, 33(1), 106–118. https://doi.org/10.1093/treephys/tps127
  • Sumnall, M. J., Albaugh, T. J., Carter, D. R., Cook, R. L., Hession, W. C., Campoe, O. C., Rubilar, R. A., Wynne, R. H., & Thomas, V. A. (2022). Effect of varied unmanned aerial vehicle laser scanning pulse density on accurately quantifying forest structure. International Journal of Remote Sensing, 43(2), 721–750. https://doi.org/10.1080/01431161.2021.2023229
  • Thom, D., Rammer, W., Garstenauer, R., & Seidl, R. (2018). Legacies of past land use have a stronger effect on forest carbon exchange than future climate change in a temperate forest landscape. Biogeosciences, 15(18), 5699–5713. https://doi.org/10.5194/BG-15-5699-2018
  • Tomaštík, J., & Everett, T. (2023). Static positioning under tree canopy using low-cost GNSS receivers and adapted RTKLIB software. Sensors, 23(6), 3136. https://doi.org/10.3390/s23063136
  • Tompalski, P., Coops, N. C., White, J. C., Wulder, M. A., Mahoney, C., Hopkinson, C., & Chasmer, L. (2016). Enhancing forest growth and yield predictions with airborne laser scanning data: Increasing spatial detail and optimizing yield curve selection through template matching. Forests, 7(11), 255. https://doi.org/10.3390/F7110255
  • Toraño Caicoya, A., Kugler, F., Pretzsch, H., & Papathanassiou, K. (2015). Forest vertical structure characterization using ground inventory data for the Estimation of forest Aboveground Biomass. Canadian Journal of Forest Research, 46(1), 25–38. https://doi.org/10.1139/cjfr-2015-0052
  • Torre-Tojal, L., Bastarrika, A., Boyano, A., Lopez-Guede, J. M., & Graña, M. (2022). Above-ground biomass estimation from LiDAR data using random forest algorithms. Journal of Computational Science, 58, 101517. https://doi.org/10.1016/j.jocs.2021.101517
  • Trim, K. R., Coble, D. W., Weng, Y., Stovall, J. P., & Hung, I.-K. (2020). A new site index Model for intensively managed loblolly pine (Pinus Taeda) plantations in the West Gulf Coastal Plain. Forest Sciences, 66(1), 2–13. https://doi.org/10.1093/forsci/fxz050
  • Vance, E. D. (2000). Agricultural site productivity: Principles derived from long-term experiments and their implications for intensively managed forests. Forest Ecology and Management, 138(1), 369–396. https://doi.org/10.1016/S0378-1127(00)00425-4
  • Vieira Wandelli, E., & Martin Fearnside, P. (2015). Secondary vegetation in Central Amazonia: Land-use history effects on aboveground biomass. Forest Ecology and Management, 347, 140–148. https://doi.org/10.1016/j.foreco.2015.03.020
  • Weise, W. (1880). Ertragstafeln fur die Kiefer. Springer.
  • Wright, M. N., & Ziegler, A. (2017). Ranger: A fast implementation of random forests for high dimensional data in C++ and R. Journal of Statistical Software, 77(1), 1–17. https://doi.org/10.18637/jss.v077.i01
  • Yang, Y., & Huang, S. (2018). Effects of competition and climate variables on modelling height to live crown for Three Boreal Tree Species in Alberta, Canada. European Journal of Forest Research, 137(3), 153–167. https://doi.org/10.1007/s10342-017-1095-7
  • Yu, X., Hyyppä, J., Holopainen, M., & Vastaranta, M. (2010). Remote sensing comparison of area-based and individual tree-based methods for predicting plot-level forest attributes. Remote Sensing, 2(6), 1481–1495. https://doi.org/10.3390/rs2061481
  • Zhang, L., Bi, H., Cheng, P., & Davis, C. J. (2004). Modeling spatial variation in tree diameter-height relationships. Forest Ecology and Management, 189(1–3), 317–329. https://doi.org/10.1016/j.foreco.2003.09.004
  • Zhao, D., Kane, M., Teskey, R., Fox, T. R., Albaugh, T. J., Allen, H. L., & Rubilar, R. (2016). Maximum Response of Loblolly Pine Plantations to Silvicultural Management in the Southern United States. Forest Ecology and Management, 375, 105–111. https://doi.org/10.1016/j.foreco.2016.05.035
  • Zhen, Z. Quackenbush, L. J. & Zhang, L. (2016). Trends in automatic individual tree crown detection and delineation—evolution of LiDAR data. Remote Sensing, 8(4), 333.
  • Zornoza, R., Guerrero, C., Mataix-Solera, J., Scow, K. M., Arcenegui, V., & Mataix-Beneyto, J. J. (2009). Changes in soil microbial community structure following the abandonment of agricultural terraces in Mountainous Areas of Eastern Spain. Applied Soil Ecology, 42(3), 315–323. https://doi.org/10.1016/j.apsoil.2009.05.011