1,603
Views
5
CrossRef citations to date
0
Altmetric
Original Research Paper

Comparison of vehicle mortality following in ovo exposure of Japanese quail (Coturnix japonica) eggs to corn oil, triolein and a fatty acid mix

, , , , &
Article: e1224022 | Received 06 Jan 2015, Accepted 09 Aug 2016, Published online: 26 Sep 2016

References

  • Albers PH. The effects of petroleum of different stages on incubation in bird eggs. Bull. Environ Contam Toxicol 1978; 19:624-30; PMID:667391; http://dx.doi.org/10.1007/BF01685849
  • Albers PH, Heinz GH. FLIT-MO and No. 2 fuel oil: effects of aerosol applications to mallard eggs on hatchability and behavior of ducklings. Environ Res 1983; 30(2):381-8; PMID:6832122; http://dx.doi.org/10.1016/0013-9351(83)90223-2
  • Szaro RC, Coon NC, Stout W. Weathered petroleum: effects on mallard egg hatchability. J Wildl Manage 1980; 44:709-13; http://dx.doi.org/10.2307/3808025
  • Berg C, Holm L, Brandt I, Brunström B. Anatomical and histological changes in the oviducts of Japanese quail, Coturnix japonica, after embryonic exposure to ethynyloestradiol. Reprod 2001; 121:155-65; PMID:11226039; http://dx.doi.org/10.1530/rep.0.1210155
  • Brunström B. Toxicity of coplanar polychlorinated biphenyls in avian embryos. Chemosphere 1989; 19(1–6):765-68; http://dx.doi.org/10.1016/0045-6535(89)90405-0
  • Brunström B. Toxicity and EROD-inducing potency of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) in avian embryos. Comp Biochem Physiol C 1981; 100:241-43; http://dx.doi.org/10.1016/0742-8413(91)90161-L
  • Fernie K, Bortolotti G. Reproductive abnormalities, teratogenicity, and developmental problems in American kestrels (Falco sparverius) exposed to polychlorinated biphenyls. J Toxicol Environ Health Part A 2003; 66:2089-103; PMID:14710594; http://dx.doi.org/10.1080/15287390390211270
  • Fernie K, Smits J, Bortolotti G. Developmental toxicity of in ovo exposure to polychlorinated biphenyls: I. Immediate and subsequent effects on first-generation nestling American kestrels (Falco sparverius). Environ Toxicol Chem 2003; 22(3):554-60; PMID:12627642; http://dx.doi.org/10.1897/1551-5028(2003)022%3c0554:DTOIOE%3e2.0.CO;2
  • Heinz GH, Hoffman DJ, Kondrad SL, Erwin CA. Factors affecting the toxicity of methylmercury injected into eggs. Arch Environ Contam Toxicol 2006;50(2):264-79; PMID:16307214; http://dx.doi.org/10.1007/s00244-005-1002-y
  • Heinz GH, Hoffman DJ, Klimstra JD, Stebbins KR, Kondrad SL, Erwin DA. Species differences in the sensitivity of avian embryos to methylmercury. Arch Environ Contam Toxicol 2009; 56:129-38; PMID:18421496; http://dx.doi.org/10.1007/s00244-008-9160-3
  • Molina ED, Balander R, Fitzgerald SD, Giesy JP, Kannan K, Mitchell R, Bursian SJ. Effects of air cell injection of perfluorooctane sulfonate before incubation on development of the white leghorn chicken, (Gallus domesticus) embryo. Environ Toxicol Chem 2006; 25(1):227-32; PMID:16494246; http://dx.doi.org/10.1897/04-414R.1
  • McKernan MA, Rattner BA, Hale RC, Ottinger MA. Egg incubation position affects toxicity of air cell administered polychlorinated biphenyl 126 (3,3′,4,4′,5-pentachlorobiphenyl) in chicken (Gallus gallus) embryos. Environ Toxicol Chem 2007; 26(12):2724-7; PMID:18020697; http://dx.doi.org/10.1897/07-291.1
  • Lavoie ET, Grasman KA. Effects of in ovo exposure to PCBs 126 and 77 on mortality, deformities, and post-hatch immune function in chickens. J Toxicol Environ Health Part A 2007; 70:547-58; PMID:17365608; http://dx.doi.org/10.1080/15287390600882226
  • Quinn MJ Jr, McKernan M, Lavoie ET, Ottinger MA. Immunotoxicity of trenbolone acetate in Japanese quail. J Toxicol Environ Health A 2007; 70(1):88-93; PMID:17162502; http://dx.doi.org/10.1080/15287390600755026
  • Augspurger TP, Tillitt DE, Bursian SJ, Fitzgerald SD, Hinton DE, Di Giulio RT. Embryo toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin to the wood duck (Aix sponsa). Arch Environ Contam Toxicol 2008; 55(4):659-69; PMID:18704254; http://dx.doi.org/10.1007/s00244-008-9198-2
  • Ottinger MA, Lavoie ET, Abdelnabi M, Quinn MJ Jr., Marcell A, Dean K. An overview of dioxin-like compounds, PCB, and pesticide exposures associated with sexual differentiation of neuroendocrine systems, fluctuating asymmetry, and behavioral effects in birds. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 2009; 27(4):286-300; PMID:19953400; http://dx.doi.org/10.1080/10590500903310229
  • Utsumi T, Yoshimura Y. Sensitive embryonic endpoints with in ovo treatment for detecting androgenic and anti-androgenic effects of chemicals in Japanese quail (Coturnix japonica). Poult Sci 2009; 88(5):1052-9; PMID:19359695; http://dx.doi.org/10.3382/ps.2008-00326
  • Head JA, Kennedy SW. Correlation between an in vitro and in vivo measure of dioxin sensitivity in birds. Ecotoxicol 2010; 19(2):377-82; http://dx.doi.org/10.1007/s10646-009-0421-3
  • Cohen-Barnhouse AM, Zwiernik MJ, Link JE, Fitzgerald SD, Kennedy SW, Hervé JC, Giesy JP, Wiseman S, Yang Y, Jones PD, Wan Y, Collins B, Newsted JL, Kay D, Bursian SJ. Sensitivity of Japanese quail (Coturnix japonica), common pheasant (Phasianus colchicus) and white leghorn chicken (Gallus gallus domesticus) embryos to in ovo exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 2,3,4,7,8-pentachlorodibenzofuran (PeCDF) and 2,3,7,8-tetrachlorodibenzofuran (TCDF). Toxicol Sci 2011; 119(1):93-103; PMID:20861070; http://dx.doi.org/10.1093/toxsci/kfq289
  • Finch BE, Wooten KJ, Smith PN. Embryotoxicity of weathered crude oil from the Gulf of Mexico in mallard ducks (Anas platyrhynchos). Environ Toxicol Chem 2011; 30(8):1885-91; PMID:21560150; http://dx.doi.org/10.1002/etc.576
  • Ottinger MA, Wu JM, Hazelton JL, Abdelnabi MA, Thompson N, Quinn ML Jr, Donoghure D, Schenck F, Ruscio M, Beavers J, et al. Assessing the consequences of the pesticide methoxychlor: neuroendocrine and behavioral measures as indicators of biological impact of an estrogenic environmental chemical. Brain Res Bull 2005; 65(3):199-209; PMID:15811582; http://dx.doi.org/10.1016/j.brainresbull.2004.11.019
  • Hoffman DJ. Embryotoxic effects of crude oil in mallard ducks and chicks. Toxicol Appl Pharmacol 1978; 46:183-90; PMID:725942; http://dx.doi.org/10.1016/0041-008X(78)90149-7
  • Sewalk CJ, Brewer GL, Hoffman DJ. Effects of diquat, an aquatic herbicide, on the development of mallard embryos. J Toxicol Environ Health A 2001.62(1):33-45; PMID:11205534; http://dx.doi.org/10.1080/00984100050201659
  • Hoffman DJ, Albers PH, Melancon MJ, Miles AK. Effects of the mosquito larvicide GB-1111 on bird eggs. Environ Pollut 2004; 127(3):353-8; PMID:14638295; http://dx.doi.org/10.1016/j.envpol.2003.08.021
  • Buscemi DM, Hoffman DJ, Vyas NB, Spann JW, Kuenzel WJ. Effects of Phos-Chek G75-F and Silv-Ex on red-winged blackbird (Agelaius phoeniceus) embryos. Environ Pollut 2007; 148(1):312-5; PMID:17223235; http://dx.doi.org/10.1016/j.envpol.2006.10.015
  • Powell DC, Aulerich RJ, Meadows JC, Tillitt DE, Giesy JP, Stromborg KL, Bursian SJ. Effects of 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) injected into yolks of chicken (Gallus domesticus) eggs prior to incubation. Arch Environ Contam Toxicol 1996; 31:404-9; PMID:8854835; http://dx.doi.org/10.1007/BF00212680
  • McKernan MA, Rattner BA, Hatfield JS, Hale FC, Ottinger MA. Absorption and biotransformation of polybrominated diphenyl ethers DE-71 and DE-79 in chicken (Gallus gallus), mallard (Ana platyrhynchus), American kestrel (Falco sparverius) and black-crowned night-heron (Nycticorax nycticorax) eggs. Chemosphere 2010; 79(1):100-9; PMID:20079516; http://dx.doi.org/10.1016/j.chemosphere.2009.12.023
  • Van den Steen E, Eens M, Jaspers VL, Covaci A., Pinxten R. Effects of laying order and experimentally increased egg production on organic pollutants in eggs of a terrestrial songbird species, the great tit (Parus major). Sci Total Environ 2009; 407(16):4764-70; PMID:19447471; http://dx.doi.org/10.1016/j.scitotenv.2009.04.045
  • Akearok JA, Hebert CE, Braune BM, Mallory ML. Inter- and intra-clutch variation in egg mercury levels in marine birds species from the Canadian Arctic. Sci Total Envirno 2010; 408(4):836-40; PMID:19962722; http://dx.doi.org/10.1016/j.scitotenv.2009.11.039
  • Custer CM, Gray BR, Custer TW. Effects of egg order on organic and inorganic element concentrations and egg characteristics in tree swallows, Tachycineta bicolor. Environ Toxicol Chem 2010; 29(4):909-21; PMID:20821521; http://dx.doi.org/10.1002/etc.88
  • Fournier A, Feidt C, Dziurla MA, Grandclaudon C, Jondreville C. Transfer kinetics to egg yolk and modeling residue recovered in yolk of readily metabolized molecules: polycyclic aromatic hydrocarbons orally administered to laying hens. Chemosphere 2010; 78(8):1004-10; PMID:20060565; http://dx.doi.org/10.1016/j.chemosphere.2009.12.008
  • De Roode DF, van den Brink NW. Uptake of injected PCBs from the yolk by the developing chicken embryo. Chemosphere 2002; 48:195-9; PMID:12117054; http://dx.doi.org/10.1016/S0045-6535(02)00063-2
  • Pastor D, Ruiz X, Jover L, Albaiges J. The of chorioallantoic membranes as predictors of egg organochlorine burden. Environ Toxicol Chem 1996; 15(2):167-71; http://dx.doi.org/10.1002/etc.5620150215
  • Custer TW, Custer CM, Stromborg KL. Distribution of organchlorine contaminants in double-crested cormorant eggs and sibling embryos. Environ Toxicol Chem 1997; 16(8):1646-9; PMID:9096082; http://dx.doi.org/10.1002/etc.5620160812
  • Drouillard KG, Norstrom RJ, Fox GA, Gilman A, Peakall DB. Development and validation of a herring gull embryo toxicokinetic model for PCBs. Ecotoxicol 2003; 12(1–4):55-68; PMID:12739857; http://dx.doi.org/10.1023/A:1022588913171
  • Brunstrom B, Halldin K. 1998. EROD induction by environmental contaminants. Comp Biochem. Physiol. C Phamacol. Toxicol. Endocrinol 121(1–3):213-9; http://dx.doi.org/10.1016/S0742-8413(98)10042-7
  • Halldin K, Berg C, Brandt I, Brunstrom B. Sexual behavior in Japanese quail as a test end point for endocrine disruption: effects of in ovo exposure to ethinylestradiol and diethylstilbestrol. Environ Health Perspect 1999; 107(11):861-6; PMID:10544152; http://dx.doi.org/10.1289/ehp.99107861
  • Halldin K, Berg C, Bergman A, Brandt I, Brunstrom B. Distribution of bisphenol A and tetrabromobisphenol A in quail eggs, embryos, and laying birds and studies on reproduction variables in adults following in ovo exposure. Arch Toxicol 2001; 75(10):597-603; PMID:11808920; http://dx.doi.org/10.1007/s002040100277
  • Halldin K, Holm L, Ridderstrale Y, Brunstrom B. Reproductive impairment in Japanese quail (Coturnix japonica) after in ovo exposure to o,p’-DDT. Arch Toxicol 2003; 77(2):116-22; PMID:12590364
  • Blankenship AL, Hilscherova K, Nie M, Coady KK, Villalobos SA, Kannan K, Powell DC, Bursian SJ, Giesy JP. Mechanisms of TCDD-induced abnormalities and embryo lethality in white leghorn chickens. Comp Biochem Physiol C Toxicol Pharmacol 2003; 136(1):47-62; PMID:14522598; http://dx.doi.org/10.1016/S1532-0456(03)00166-2
  • Boily MH, Ndayibagira A, Spear PA. Retinoid metabolism in the yolk-sac membrane of Japanese quail eggs and effects of mono-ortho-PCB's. Comp Biochem Physiol C Toxicol Pharmacol 2003; 134(1):11-23; PMID:12524014; http://dx.doi.org/10.1016/S1532-0456(02)00146-1
  • De Witt JC, Meyer EB, Henshel DS. Environmental toxicity studies using chickens as surrogates for wildlife: effects of vehicle volume. Arch Environ Contam Toxicol 2005a; 48(2):260-9; http://dx.doi.org/10.1007/s00244-004-1006-2
  • De Witt JC, Meyer EB, Henshel DS. Environmental toxicity studies using chickens as surrogates for wildlife: effects of injection day. Arch Environ Contam Toxicol 2005b; 48:270-7; PMID:15750775 ; http://dx.doi.org/10.1007/s00244-004-2006-8
  • Fernie KJ, Shutt JL, Mayne G, Hoffman D, Letcher RJ, Drouillard KG, Ritchie LI. Exposure to polybrominated diphenyl ethers (PBDEs): changes in thyroid, vitamin A, glutathione, homeostasis, and oxidative stress in American kestrels (Falco sparverius). Toxicol Sci 2005; 88(2):375-83; PMID:16120752; http://dx.doi.org/10.1093/toxsci/kfi295
  • Kamata R, Takahasi S, Shimizu A, Morita M, Shiraishi F. In ovo exposure quail assay for risk assessment of endocrine disrupting chemicals. Arch Toxicol 2006; 80(12):857-67; PMID:16710698; http://dx.doi.org/10.1007/s00204-006-0113-1
  • Wilhelms KW, Fitzpatrick KF, Scanes CG, Anderson LL. In ovo exposure to atrazine herbicide: effects of atrazine on circulating reproductive hormones and gonadal histology in young Japanese quail. Arch Environ Contam Toxicol 2006; 51(1):117-22; PMID:16418894; http://dx.doi.org/10.1007/s00244-005-0165-x
  • Howell TJ, MacDougall DE, Jones PJH. Phytosterols partially explain differences in cholesterol metabolism cause by corn or olive oil feeding. J Lipid Res 1998; 39:892-900; PMID:9555952
  • Ratnayake WMN, L'Abbe MR, Mueller R, Hayward S, Plouffe L, Hollywood R, Trick K. Vegetable oils high in phytosterols make erythrocytes less deformable and shorten the life span of stroke-prone spontaneously hypertensive rats. J Nutri 2000; 130(5):1166-78
  • Ostlund RE Jr, Racette SB, Okeke A, Stenson WF. Phytosterols that are naturally present in commercial corn oil significantly reduce cholesterol absorption in humans. Am J Clin Nutr 2002; 75(6):1000-4; PMID:12036805
  • Ottinger MA, Duchala CS, Masson M. Age-related decline in the male Japanese quail. Horm Behav 1983; 17(2):197-207; PMID:6885007; http://dx.doi.org/10.1016/0018-506X(83)90007-7
  • Henshel DS, DeWitt J, Troutman A. Using chicken embryos for teratology studies. Curr Protoc Toxicol 2003; Chapter13(Unit 13.4):1-19
  • Mills AD, Crawford LL, Domian M, Faure JM. The behavior of the Japanese or domestic quail, Coturnix japonica. Neurosci Biobehav Rev 1997; 21(3):261-81; PMID:9168263; http://dx.doi.org/10.1016/S0149-7634(96)00028-0
  • Henshel DS, Hehn R, Wagey R, Vo M, Steeves JD. The relative sensitivity of chicken embryos to yolk- or air-call injected 2,3,7,8-tetrachlorodibenzo-p-dioxin. Environ Toxicol Chem 1997; 16(4):725-32; http://dx.doi.org/10.1002/etc.5620160417
  • Lin F, Wu J, Abdelnabi MA, Ottinger MA, Giustl MM. Effects of dose and glycosylation on the transfer of genistein into the eggs of Japanese quail (Coturnix japonica). J Agric Food Chem 2004; 52(8):2397-403; PMID:15080653; http://dx.doi.org/10.1021/jf034921f
  • Yoshizaki N, Soga M, Yasushi I, Mao KM, Sultana F, Yonezawa S. Two-step consumption of yolk granules during the development of quail embryos. Devel Growth Diff 2004; 46:229-38; PMID:15206954; http://dx.doi.org/10.1111/j.1440-169X.2004.00740.x
  • Bargar TA, Scott GI, Cobb GP. Uptake and distribution of three PCB congeners and endosulfan by developing white leghorn chicken embryos (Gallus domesticus). Rch Environ Contam Toxicol 2001; 41:508-14; PMID:11598789; http://dx.doi.org/10.1007/s002440010278
  • Maervoet J, Beck V, Roelens SA, Covaci A, Voorspoels S, Geuns JMC, Darras VM, Scepens P. Uptake and tissue-specific distribution of selected polychlorinated biphenyls in developing chicken embryos. Environ Toxicol Chem 2005; 24(3):597-602; PMID:15779759; http://dx.doi.org/10.1897/04-266R.1
  • Qiao GL, Riviere JE. Enhanced systemic tissue distribution after dermal versus intravenous 3,3′4,4′-tetrachlorobiphenyl exposure: limited utility of radiolabel blood area under the curve and excretion data in dermal absorption calculations and tissue exposure assessment. Toxicol Appl Pharmacol 2001; 177:26-37; PMID:11708897; http://dx.doi.org/10.1006/taap.2001.9284
  • Von Englehardt N, Henriksen R, Groothuis TG. Steroids in chicken egg yolk: metabolism and uptke during early embryonic development. Gen Comp Endocrinol 2009; 163(1-2):175-83; PMID:19362557; http://dx.doi.org/10.1016/j.ygcen.2009.04.004
  • Tokusoglu Ö. The quality properties and saturated and unsaturated fatty acid profiles of quail egg: the alterations of fatty acid with process effects. Intern J Food Sci Nutrit 2006; 57(7/8):537-45; PMID:17162332; http://dx.doi.org/10.1080/09637480601049725
  • Agresti A. Categorical Data Analysis. New York: Wiley. 1990
  • Quinn GP, Keough MJ. Experimental Design and Data Analysis for Biologists. Cambridge: Cambridge University Press. 2002