97
Views
2
CrossRef citations to date
0
Altmetric
Articles

Robust control of isopropyl benzene production process using H loop shaping control scheme

ORCID Icon, ORCID Icon & ORCID Icon
Pages 153-163 | Received 24 Jan 2022, Accepted 07 Nov 2022, Published online: 21 Nov 2022

References

  • Agamennoni, O. E., Desages, A. C., & Romagnoli, J. A. (1988). Robust controller design methodology for multivariable chemical processes. Chemical Engineering Science, 43(11), 2937–2950. https://doi.org/10.1016/0009-2509(88)80047-2
  • Apkarian, P., & Noll, D. (2018). Structured H∞-control of infinite-dimensional systems. International Journal of Robust and Nonlinear Control, 28(9), 3212–3238. https://doi.org/10.1002/rnc.4073
  • Bakošová, M., Puna, D., & Mészáros, A. (2005). Robust controller design for a chemical reactor. In L. Puigjaner & A. B. T.-C. A. C. E. Espuña (Eds.), 38 European symposium of the working party on computer aided process engineering-15 (Vol. 20, pp. 1303–1308). Elsevier. https://doi.org/10.1016/S1570-7946(05)80059-8
  • Castagnotto, A., Varona, M. C., Jeschek, L., & Lohmann, B. (2017). Sss & sssMOR: Analysis and reduction of large-scale dynamic systems in MATLAB. At-Automatisierungstechnik, 65(2), 134–150. https://doi.org/10.1515/auto-2016-0137
  • Chen, C.-T., & Dai, C.-S. (2001). Robust controller design for a class of nonlinear uncertain chemical processes. Journal of Process Control, 11(5), 469–482. https://doi.org/10.1016/S0959-1524(00)00032-9
  • Chen, C.-T., & Wang, M.-D. (1997). Robust controller design for interval process systems. Computers & Chemical Engineering, 21(7), 739–750. https://doi.org/10.1016/S0098-1354(96)00302-X
  • De Souza, A. G., & De Souza, L. C. G. (2015). H infinity controller design to a rigid-flexible satellite with two vibration modes. Journal of Physics: Conference Series, 641(XVII Brazilian Colloquium on Orbital Dynamics). https://doi.org/10.1088/1742-6596/641/1/012030
  • Doyle, J., Glover, K., Khargonekar, P., & Francis, B. (1988). State-space solutions to standard H2 and H∞ control problems. In 1988 American control conference (pp. 1691–1696). IEEE.
  • Doyle, J. C., Glover, K., Khargonekar, P. P., & Francis, B. A. (1989). State-space solutions to standard H2 and H∞ control problems. IEEE Transactions on Automatic Control, 34(8), 831–847. https://doi.org/10.1109/9.29425
  • Figueroa, J. L., Desages, A. C., Palazoglu, A., & Romagnoli, J. A. (1993). Trade-offs in robust controller design. International Journal of Control, 58(6), 1265–1278. https://doi.org/10.1080/00207179308923054
  • Flegiel, F., Sharma, S., & Rangaiah, G. P. (2015). Development and multiobjective optimization of improved cumene production processes. Materials and Manufacturing Processes, 30(4), 444–457. https://doi.org/10.1080/10426914.2014.967355
  • Gahinet, P., & Apkarian, P. (1994). A linear matrix inequality approach to H∞ control. International Journal of Robust and Nonlinear Control, 4(4), 421–448. https://doi.org/10.1002/rnc.4590040403
  • Golovin, I., & Palis, S. (2019). Robust control for active damping of elastic gantry crane vibrations. Mechanical Systems and Signal Processing, 121(1), 264–278. https://doi.org/10.1016/j.ymssp.2018.11.005
  • Grant, M., & Boyd, S. (2014). CVX: Matlab software for disciplined convex programming, version 2.1. http://cvxr.com/cvx
  • Ioannidis, G. C., & Manias, S. N. (1999). H∞ loop-shaping control schemes for the buck converter and their evaluation using mu-analysis. IEE Proceedings-Electric Power Applications, 146(2), 237–246. https://doi.org/10.1049/ip-epa:19990206
  • Irfan, S., Mehmood, A., Razzaq, M. T., & Iqbal, J. (2018). Advanced sliding mode control techniques for inverted pendulum: Modelling and simulation. Engineering Science and Technology, an International Journal, 21(4), 753–759. https://doi.org/10.1016/j.jestch.2018.06.010
  • Jeffrey, B. B. (1999). Linear optimal control. Addison Wesley.
  • Komari Alaei, H., & Yazdizadeh, A. (2014). Robust flow controller design and analysis for a chemical process. Transactions of the Institute of Measurement and Control, 36(6), 723–733. https://doi.org/10.1177/0142331213509831
  • Lakshmanan, V. M., Kallingal, A., & Sreekumar, S. (2021). Modelling and performance analysis for cumene production process in a four-layer packed bed reactor. International Journal of Chemical Reactor Engineering, 20(8), 815–831. https://doi.org/10.1515/ijcre-2021-0177
  • Lanzon, A. (2005). Weight optimisation in H∞ loop-shaping. Automatica, 41(7), 1201–1208. https://doi.org/10.1016/j.automatica.2005.01.010
  • Manenti, F., Cieri, S., Restelli, M., & Bozzano, G. (2013). Dynamic modeling of the methanol synthesis fixed-bed reactor. Computers and Chemical Engineering, 48(1), 325–334. https://doi.org/10.1016/j.compchemeng.2012.09.013
  • McFarlane, D., & Glover, K. (1992). A loop-shaping design procedure using H∞ synthesis. IEEE Transactions on Automatic Control, 37(6), 759–769. https://doi.org/10.1109/9.256330
  • Nidya, M. V., Mija, S. J., & Jacob, J. (2021). Feedback-linearization based robust relatively optimal trajectory tracking controller for 3-DOF helicopter. Engineering Science and Technology, an International Journal, 3(1), 101050. https://doi.org/10.1016/j.jestch.2021.08.007
  • Park, H. M. (2018). A multiscale modeling of fixed bed catalytic reactors. International Journal of Heat and Mass Transfer, 116(1), 520–531. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.035
  • Ravichandran, S., & Patnaik, S. K. (2013). Implementation of dual-loop controller for positive output elementary Luo converter. IET Power Electronics, 6(5), 885–893. https://doi.org/10.1049/iet-pel.2012.0630
  • Rotea, M. A. (1993). The generalized H2 control problem. Automatica, 29(2), 373–385. https://doi.org/10.1016/0005-1098(93)90130-L
  • Shinnar, R. (1981). Chemical reactor modelling for purposes of controller design. Chemical Engineering Communications, 9(1–6), 73–99. https://doi.org/10.1080/00986448108911016
  • Sreekumar, S., Kallingal, A., & Mundakkal, L. V. (2021b). Adaptive neuro-fuzzy approach to sodium chlorate cell modeling to predict cell pH for energy-efficient chlorate production. Chemical Engineering Communications, 208(2), 256–270. https://doi.org/10.1080/00986445.2019.1708740
  • Sreekumar, S., Kallingal, A., & Mundakkal, L. V. (2022). Ph control in sodium chlorate cell for energy efficiency using PSO-FOPID controller. Chemical Industry and Chemical Engineering Quarterly, 28(2), 127-134.
  • Vasičkanmová, A., & Bakošová, M. (2013). Robust control of a chemical reactor with uncertainties. Acta Chimica Slovaca, 6(2), 194–201. https://doi.org/10.2478/acs-2013-0031
  • Vasičkanmová, A., Bakošová, M., Čirka, E., & Kalúz, M. (2015). Comparison of robust control techniques for use in continuous stirred tank reactor control. IFAC-PapersOnLine, 48(14), 284–289. https://doi.org/10.1016/j.ifacol.2015.09.471
  • Vinila, M. L., Aparna, K., & Sreepriya, S. (2019). Optimization of parametric model of cumene reactor using loop shaping methodology and dynamic modeling of reactor. In International conference on intelligent computing, information and control systems (pp. 201–208). Springer.
  • Wallam, F., & Memon, A. Y. (2017). A robust control scheme for nonlinear non-isothermal uncertain jacketed continuous stirred tank reactor. Journal of Process Control, 51(1), 55–67. https://doi.org/10.1016/j.jprocont.2016.11.001
  • Yan, X., Wang, P., Qing, J., Wu, S., & Zhao, F. (2020). Robust power control design for a small pressurized water reactor using an H infinity mixed sensitivity method. Nuclear Engineering and Technology, 52(7), 1443–1451. https://doi.org/10.1016/j.net.2019.12.031
  • Yang, X., Wang, S., Li, B., He, Y., & Liu, H. (2020). Performance of ethanol steam reforming in a membrane-assisted packed bed reactor using multiscale modelling. Fuel, 274(April), 117829. https://doi.org/10.1016/j.fuel.2020.117829
  • Zames, G., & Francis, B. (1983). Feedback, minimax sensitivity, and optimal robustness. IEEE Transactions on Automatic Control, 28(5), 585–601. https://doi.org/10.1109/TAC.1983.1103275
  • Zhai, J., Liu, Y., Li, L., Zhu, Y., Zhong, W., & Sun, L. (2015). Applications of dividing wall column technology to industrial-scale cumene production. Chemical Engineering Research and Design, 102(1), 138–149. https://doi.org/10.1016/j.cherd.2015.06.020

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.