326
Views
0
CrossRef citations to date
0
Altmetric
Civil & Environmental Engineering

Modeling the Orimet multiphysical flow of fresh self-compacting concrete considering proportionate heterogeneity of aggregates

ORCID Icon &
Article: 2297483 | Received 16 Sep 2023, Accepted 14 Dec 2023, Published online: 13 Jan 2024

References

  • Colagrossi, A., Antuono, M., & Le Touzé, D. (2009). Theoretical considerations on the free-surface role in the smoothed-particle-hydrodynamics model. Physical Review E, 79(5). https://doi.org/10.1103/physreve.79.056701
  • EFNARC (2002). Specification and guidelines for self-compacting concrete (p. 32). European Federation of National Associations Representing Producers and Applicators of Specialist Building Products for Concrete (EFNARC).
  • Franz, T., & Wendland, H. (2018). Convergence of the smoothed particle hydrodynamics method for a specific barotropic fluid flow: Constructive kernel theory. SIAM Journal on Mathematical Analysis, 50(5), 4752–4784. https://doi.org/10.1137/17M1157696
  • González-Taboada, I., González-Fonteboa, B., Martínez-Abella, F., & Seara-Paz, S. (2018). Evaluation of self-compacting recycled concrete robustness by statistical approach. Construction and Building Materials, 176, 720–736. https://doi.org/10.1016/j.conbuildmat.2018.05.059
  • González-Taboada, I., González-Fonteboa, B., Martínez-Abella, F., & Seara-Paz, S. (2017). Analysis of rheological behaviour of self-compacting concrete made with recycled aggregates. Construction and Building Materials, 157, 18–25. https://doi.org/10.1016/j.conbuildmat.2017.09.076
  • Gram, A., & Silfwerbrand, J. (2011). Numerical simulation of fresh SCC flow: Applications. Materials and Structures, 44, 805–813. https://doi.org/10.1617/s11527-010-9666-9
  • Hosseinpoor, M., Khayat, K. H., & Yahia, A. (2017). Numerical simulation of self-consolidating concrete flow as a heterogeneous material in L-Box set-up: Effect of rheological parameters on flow performance. Cement and Concrete Composites, 83, 290–307. https://doi.org/10.1016/j.cemconcomp.2017.07.027
  • Kaveh, A., Bakhshpoori, T., & Hamze-Ziabari, S. M. (2018). M5′ and Mars based prediction models for properties of self-compacting concrete containing fly ash. PeriodicaPolytechnica Civil Engineering, 62(2), 281–294. https://doi.org/10.3311/PPci.10799
  • Lind, S. J., Rogers, B. D., & Stansby, P. K. (2020). Review of smoothed particle hydrodynamics: Towards converged Lagrangian flow modelling. Proceeding of the Royal Society A: Mathematical, Physical and Engineering Sciences, 476, 20190801. https://doi.org/10.1098/rspa.2019.0801
  • Monaghan, J. J. (2005). Theory and applications of smoothed particle hydrodynamics. In J. F. Blowey & A. W. Craig (Eds.), Frontiers of numerical analysis. Universitext. Springer. https://doi.org/10.1007/3-540-28884-8_3
  • Onyelowe, K. C. & Kontoni, D.-P. N. (2023). The net-zero and sustainability potential of SCC development, production and flowability in structures design. International Journal of Low Carbon Technologies, 18, 530–541. https://doi.org/10.1093/ijlct/ctad033
  • Onyelowe, K. C., Kontoni, D.-P. N., & Ebid, A. M. (2022a). Simulation of self-compacting concrete (SCC) passing ability using the L-box model for sustainable buildings. IOP Conference Series: Earth and Environmental Science, 1123, 012065. https://doi.org/10.1088/1755-1315/1123/1/012065
  • Onyelowe, K. C., Kontoni, D.-P. N., & Ebid, A. M. (2022b). Flow simulation of self-consolidating concrete through V-funnel for sustainable buildings. IOP Conference Series: Earth and Environmental Science, 1123, 012044. https://doi.org/10.1088/1755-1315/1123/1/012044
  • Onyelowe, K. C., Kontoni, D.-P. N., Ebid, A. M., & Onyia, M. E. (2023). Predicting the rheological flow of fresh self-consolidating concrete mixed with limestone powder for slump, V-funnel, L-box and Orimet models using artificial intelligence techniques. E3S Web of Conferences, 436, 08014. https://doi.org/10.1051/e3sconf/202343608014
  • Onyelowe, K. C., Kontoni, D.-P. N., Onyia, M. E., Soleymani, A., Ebid, A. M., & Jahangir, H. (2023). Overview of meshfree modeling of the flowability of fresh self-compacting concrete for sustainable structures. E3S Web of Conferences, 436, 08008. https://doi.org/10.1051/e3sconf/202343608008
  • Onyelowe, K. C., Naghizadeh, A., Aneke, F. I., Kontoni, D.-P. N., Onyia, M. E., Welman-Purchasem, M., Ebid, A. M., Adah, E. I., & Stephen, L. U. (2023). Characterization of net-zero pozzolanic potential of thermally-derived metakaolin samples for sustainable carbon neutrality construction. Scientific Reports, 13, 18901. https://doi.org/10.1038/s41598-023-46362-y
  • Petersson, O., Billberg, P. & Van, B. K. (1996). Production methods and workability of concrete; A model for self-compacting concrete (Chapter, 1st ed.). CRC Press. eBook ISBN9780429077623.
  • Revilla-Cuesta, V., Skaf, M., Ortega-López, V., & Manso, J. M. (2023). Multi-parametric flowability classification of self-compacting concrete containing sustainable raw materials: An approach to real applications. Journal of Building Engineering, 63(Part A). https://doi.org/10.1016/j.jobe.2022.105524
  • Sathyan, D., Anand, K. B., Prakash, A. J., & Premjith, B. (2018). Modeling the fresh and hardened stage properties of self-compacting concrete using random kitchen sink algorithm. International Journal of Concrete Structures and Materials, 12, 24. https://doi.org/10.1186/s40069-018-0246-7
  • Shukla, S. K. (2022). Seven research mantras: A short guide for researchers. International Journal of Geosynthetics and Ground Engineering, 8(6), 75:1–75:4. https://doi.org/10.1007/s40891-022-00419-6
  • Sigalotti, L. D. G., Klapp, J., & Gesteira, M. G. (2021). The mathematics of smoothed particle hydrodynamics (SPH) consistency. Frontiers in Applied Mathematics and Statistics, 7. https://doi.org/10.3389/fams.2021.797455
  • Sonebi, M. (2004). Medium strength self-compacting concrete containing fly ash: Modelling using factorial experimental plans. Cement and Concrete Research, 34(7), 1199–1208. https://doi.org/10.1016/j.cemconres.2003.12.022
  • Sonebi, M., & Bartos, P. J. M. (2002). Filling ability and plastic settlement of self-compacting concrete. Materials and Structures, 35, 462–469. https://doi.org/10.1007/BF02483133
  • Sonebi, M., Grünewald, S., & Walraven, J. (2007). Filling ability and passing ability of self-consolidating concrete. ACI Materials Journal, 104, 162–170.
  • Toosi, S. L. R., Ayyoubzadeh, S. A., & Valizadeh, A. (2015). The influence of time scale in free surface flow simulation using Smoothed Particle Hydrodynamics (SPH). KSCE Journal of Civil Engineering, 19, 765–770. https://doi.org/10.1007/s12205-012-0477-0
  • Wang, Z.-B., Chen, R., Wang, H., Liao, Q., Zhu, X., & Li, S.-Z. (2016). An overview of smoothed particle hydrodynamics for simulating multiphase flow. Applied Mathematical Modelling, 40(23–24), 9625–9655. https://doi.org/10.1016/j.apm.2016.06.030