662
Views
0
CrossRef citations to date
0
Altmetric
Computer Science

Multiple treatment effect estimation for business analytics using observational data

, , &
Article: 2300557 | Received 09 Aug 2023, Accepted 23 Dec 2023, Published online: 16 Jan 2024

References

  • Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., & Zheng, X. (2011). Tensorflow: A system for large-scale machine learning. In 12th USENIX symposium on operating systems design and implementation (OSDI 16), pp. 265–283.
  • Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R., & Herrera, F. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82–115. https://doi.org/10.1016/j.inffus.2019.12.012
  • Athey, S., & Imbens, G. (2016). Recursive partitioning for heterogeneous causal effects. Proceedings of the National Academy of Sciences of the United States of America, 113(27), 7353–7360. https://doi.org/10.1073/pnas.1510489113
  • Athey, S., Imbens, G., & Guido, W. (2015). Machine learning methods for estimating heterogeneous causal effects. stat, 1050(5), 1–26.
  • Bang, H., & Robins, J. M. (2005). Doubly robust estimation in missing data and causal inference models. Biometrics, 61(4), 962–973. https://doi.org/10.1111/j.1541-0420.2005.00377.x
  • Bottou, L., Peters, J., Quiñonero-Candela, J., Charles, D. X., Chickering, D. M., Portugaly, E., & Snelson, E. (2013). Counterfactual reasoning and learning systems: The example of computational advertising. Journal of Machine Learning Research, 14(1).
  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
  • Chapelle, O., & Li, L. (2011). An empirical evaluation of Thompson sampling. In Advances in Neural Information Processing Systems, p. 24.
  • Chen, H., Harinen, T., Lee, J. Y., Yung, M., & Zhao, Z. (2020). Causalml: Python package for causal machine learning. arXiv preprint, https://arxiv.org/abs/2002.11631.
  • Clevert, D. A., Unterthiner, T., & Hochreiter, S. (2016). Fast and accurate deep network learning by exponential linear units (ELUs). arXiv preprint, https://arxiv.org/abs/1511.07289.
  • Crofton, J., & Mitchison, D. A. (1948). Streptomycin resistance in pulmonary tuberculosis. British Medical Journal, 2(4588), 1009–1015. https://doi.org/10.1136/bmj.2.4588.1009
  • Deaton, A., & Cartwright, N. (1948). Understanding and misunderstanding randomized controlled trials. Social Science & Medicine (1982), 210, 2–21. https://doi.org/10.1016/j.socscimed.2017.12.005
  • Dodds, W. B., Monroe, K. B., & Grewal, D. (1991). Effects of price, brand, and store information on buyers’ product evaluations. Journal of Marketing Research, 28(3), 307–319. https://doi.org/10.2307/3172866
  • Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232.
  • Gomez-Uribe, C. A., & Hunt, N. (2015). The Netflix recommender system: Algorithms, business value, and innovation. ACM Transactions on Management Information Systems, 6(4), 1–19. https://doi.org/10.1145/2843948
  • Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM, 63(11), 139–144. https://doi.org/10.1145/3422622
  • Gupta, N. D., & Simonsen, M. (2010). Non-cognitive child outcomes and universal high quality child care. Journal of Public Economics, 94(1–2), 30–43. https://doi.org/10.1016/j.jpubeco.2009.10.001
  • Häggström, J. (2018). Data-driven confounder selection via Markov and Bayesian networks. Biometrics, 74(2), 389–398. https://doi.org/10.1111/biom.12788
  • Hassanpour, N., & Greiner, R. (2019). Learning disentangled representations for counterfactual regression [Paper presentation]. International Conference on Learning Representations.
  • Hill, J. L. (2011). Bayesian nonparametric modeling for causal inference. Journal of Computational and Graphical Statistics, 20(1), 217–240. https://doi.org/10.1198/jcgs.2010.08162
  • Kennedy, E. H. (2020). Towards optimal doubly robust estimation of heterogeneous causal effects. arXiv preprint, https://arxiv.org/abs/2004.14497.
  • Kingma, D. P., & Ba, J. (2017). dam: A method for stochastic optimization. arXiv preprint, https://arxiv.org/abs/1511.07289.
  • Kingma, D. P., & Welling, M. (2022). Auto-encoding variational bayes. arXiv preprint, https://arxiv.org/abs/1312.6114.
  • Kreif, N., & DiazOrdaz, K. (2019). Machine learning in policy evaluation: New tools for causal inference. arXiv preprint, https://arxiv.org/abs/1903.00402.
  • Künzel, S. R., Sekhon, J. S., Bickel, P. J., & Yu, B. (2019). Metalearners for estimating heterogeneous treatment effects using machine learning. Proceedings of the National Academy of Sciences of the United States of America, 116(10), 4156–4165. https://doi.org/10.1073/pnas.1804597116
  • Louizos, C., Shalit, U., Mooij, J. M., Sontag, D., Zemel, R., & Welling, M. (2017). Causal effect inference with deep latent-variable models. In Advances in Neural Information Processing Systems, p. 30.
  • Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv preprint, https://arxiv.org/abs/1312.5602.
  • Molnar, C. (2020). Interpretable machine learning. Lulu.com.
  • Nie, X., & Wager, S. (2021). Quasi-oracle estimation of heterogeneous treatment effects. Biometrika, 108(2), 299–319. https://doi.org/10.1093/biomet/asaa076
  • Pearl, J. (2009). Causality. Cambridge university press.
  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. The Journal of Machine Learning Research, 12, 2815–2830.
  • Petersen, M., Balzer, L., Kwarsiima, D., Sang, N., Chamie, G., Ayieko, J., Kabami, J., Owaraganise, A., Liegler, T., Mwangwa, F., Kadede, K., Jain, V., Plenty, A., Brown, L., Lavoy, G., Schwab, J., Black, D., van der Laan, M., Bukusi, E. A., … Havlir, D. (2017). Association of implementation of a universal testing and treatment intervention with HIV diagnosis, receipt of antiretroviral therapy, and viral suppression in East Africa. JAMA, 317(21), 2196–2206. https://doi.org/10.1001/jama.2017.5705
  • Powers, S., Qian, J., Jung, K., Schuler, A., Shah, N. H., Hastie, T., & Tibshirani, R. (2018). Some methods for heterogeneous treatment effect estimation in high dimensions. Statistics in Medicine, 37(11), 1767–1787. https://doi.org/10.1002/sim.7623
  • Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika, 70(1), 41–55. https://doi.org/10.1093/biomet/70.1.41
  • Rubin, D. B. (2005). Causal inference using potential outcomes: Design, modeling, decisions. Journal of the American Statistical Association, 100(469), 322–331. https://doi.org/10.1198/016214504000001880
  • Rzepakowski, P., & Jaroszewicz, S. (2012). Decision trees for uplift modeling with single and multiple treatments. Knowledge and Information Systems, 32(2), 303–327. https://doi.org/10.1007/s10115-011-0434-0
  • Saini, S. K., Dhamnani, S., Ibrahim, A. A., & Chavan, P. (2019 Multiple Treatment Effect Estimation using Deep Generative Model with Task Embedding [Paper presentation]. The World Wide Web Conference, pp. 1601–1611. https://doi.org/10.1145/3308558.3313744
  • Saito, Y., Sakata, Y., & Nakata, K. (2017). Doubly robust prediction and evaluation methods improve uplift modeling for observational data. In Proceedings of the 2019 SIAM International Conference on Data Mining, pp. 468–476.
  • Schwab, P., Linhardt, L., & Karlen, W. (2019). Perfect match: A simple method for learning representations for counterfactual inference with neural networks. arXiv preprint, https://arxiv.org/abs/1810.00656.
  • Schwab, P., Linhardt, L., Bauer, S., Buhmann, J. M., & Karlen, W. (2020). Learning counterfactual representations for estimating individual dose-response curves. In. Proceedings of the AAAI Conference on Artificial Intelligence, 34(04), 5612–5619. https://doi.org/10.1609/aaai.v34i04.6014
  • Shalit, U., Johansson, F. D., & Sontag, D. (2017). Estimating individual treatment effect: Generalization bounds and algorithms. In International Conference on Machine Learning, pp. 3076–3085.
  • Shi, C., Blei, D., & Veitch, V. (2019). Adapting neural networks for the estimation of treatment effects. In Advances in Neural Information Processing Systems, p. 32.
  • Srinivas, N., Krause, A., Kakade, S. M., & Seeger, M. (2009). Gaussian process optimization in the bandit setting: No regret and experimental design. arXiv preprint, https://arxiv.org/abs/0912.3995.
  • Su, X., Tsai, C. L., Wang, H., Nickerson, D. M., & Li, B. (2009). Subgroup analysis via recursive partitioning. Journal of Machine Learning Research, 10(2), 141–158.
  • Svensson, V., Gayoso, A., Yosef, N., & Pachter, L. (2020). Interpretable factor models of single-cell RNA-seq via variational autoencoders. Bioinformatics (Oxford, England), 36(11), 3418–3421. https://doi.org/10.1093/bioinformatics/btaa169
  • Tran, D., Kucukelbir, A., Dieng, A. B., Rudolph, M., Liang, D., & Blei, D. M. (2017). Edward: A library for probabilistic modeling, inference, and criticism. arXiv preprint, https://arxiv.org/abs/1610.09787.
  • Tsuboi, Y., Sakai, Y., Suzuki, S., & Goto, M. (2023). A robust estimation method for conditional average treatment effects taking account of selection bias based on causal tree. IPSJ Journal, 64(9), 1399–1412.
  • Vowels, M. J., Camgoz, N. C., & Bowden, R. (2021 Targeted VAE: Variational and targeted learning for causal inference [Paper presentation]. 2021 IEEE International Conference on Smart Data Services (SMDS), pp. 132–141. https://doi.org/10.1109/SMDS53860.2021.00027
  • Wager, S., & Athey, S. (2018). Estimation and inference of heterogeneous treatment effects using random forests. Journal of the American Statistical Association, 113(523), 1228–1242. https://doi.org/10.1080/01621459.2017.1319839
  • Yoon, J., Jordon, J., & Van, Der, Schaar, M. (2018 GANITE: Estimation of individualized treatment effects using generative adversarial nets [Paper presentation]. International Conference on Learning Representations.
  • Zhang, W., Le, T. D., Liu, L., & Li, J. (2018). Estimating heterogeneous treatment effect by balancing heterogeneity and fitness. BMC Bioinformatics, 19(Suppl 19), 518. https://doi.org/10.1186/s12859-018-2521-7
  • Zhang, W., Le, T. D., Liu, L., Zhou, Z. H., & Li, J. (2017). Mining heterogeneous causal effects for personalized cancer treatment. Bioinformatics (Oxford, England), 33(15), 2372–2378. https://doi.org/10.1093/bioinformatics/btx174
  • Zhang, W., Liu, L., & Li, J. (2021). Treatment effect estimation with disentangled latent factors. Proceedings of the AAAI Conference on Artificial Intelligence, 35(12), 10923–10930. https://doi.org/10.1609/aaai.v35i12.17304
  • Zhao, Z., & Harinen, T. (2019). Uplift modeling for multiple treatments with cost optimization [Paper presentation]. 2019 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 422–431. https://doi.org/10.1109/DSAA.2019.00057
  • ZOZO, Inc. (2023). ZOZOTOWN. https://zozo.jp/