676
Views
0
CrossRef citations to date
0
Altmetric
Civil & Environmental Engineering

Strengthening of hollow core precast prestressed reinforced concrete slabs using different techniques

, , , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2307170 | Received 13 Sep 2023, Accepted 15 Jan 2024, Published online: 23 Jan 2024

References

  • ACI Committee. (2005). Building code requirements for structural concrete (ACI 318-05) and commentary (ACI 318R-05). American Concrete Institute.
  • Araujo, C. A. M., Loriggio, D. D., & Da Camara, J. M. M. N. (2011). Anchorage failure and shear design of hollow-core slabs. Structural Concrete. 12(2), 109–119. https://doi.org/10.1002/suco.201000024
  • British Standard. (2004). Eurocode 2: Design of concrete structures. Part 1.1, 230.
  • Brunesi, E., Bolognini, D., & Nascimbene, R. (2015). Evaluation of the shear capacity of precast-prestressed hollow core slabs: Numerical and experimental comparisons. Materials and Structures, 48(5), 1503–1521. https://doi.org/10.1617/s11527-014-0250-6
  • Chen, J., Wang, Y., & Zhu, Q. (2023). Study on load transfer mechanism of local curved prestressed hollow-core slab bridge. Materials, 16(13), 4708. https://doi.org/10.3390/ma16134708
  • Cuenca, E., & Serna, P. (2013). Failure modes and shear design of prestressed hollow core slabs made of fiber-reinforced concrete. Composites Part B: Engineering, 45(1), 952–964. https://doi.org/10.1016/j.compositesb.2012.06.005
  • El-Arab, I. M. E. (2017). Web shear strengthening technique of deep precast prestressed hollow core slabs under truck loads. Journal of Building Construction and Planning Research, 5(4), 129–145. https://doi.org/10.4236/jbcpr.2017.54010
  • El-Feky, M. H., Eraky, A., Elsisi, A. A., Purcz, P., Demjan, I., Katunský, D., & Sharabash, A. M. (2023). Optimal hysteresis of shape memory alloys for eliminating seismic pounding and unseating of movement joint systems. Case Studies in Construction Materials, 19, e02219. https://doi.org/10.1016/j.cscm.2023.e02219
  • Elgabbas, F., El-Ghandour, A. A., Abdelrahman, A. A., & El-Dieb, A. S. (2010). Different CFRP strengthening techniques for prestressed hollow core concrete slabs: Experimental study and analytical investigation. Composite Structures, 92(2), 401–411. https://doi.org/10.1016/j.compstruct.2009.08.015
  • Elliott, K. S. (2014). Transmission length and shear capacity in prestressed concrete hollow core slabs. Magazine of Concrete Research, 66(12), 585–602. https://doi.org/10.1680/macr.13.00251
  • Fayed, S., Mansour, W., Tawfik, T. A., Sabol, P., & Katunský, D. (2023). Techniques used for bond strengthening of sub-standard splices in concrete: A review study. Processes, 11(4), 1119. https://doi.org/10.3390/pr11041119
  • Ferreira, F. P. V., Tsavdaridis, K. D., Martins, C. H., & De Nardin, S. (2021). Steel-concrete composite beams with precast hollow-core slabs: A sustainable solution. Sustainability, 13(8), 4230. https://doi.org/10.3390/su13084230
  • Foubert, S., Mahmoud, K., & El-Salakawy, E. (2016). Behavior of prestressed hollow-core slabs strengthened in flexure with near-surface mounted carbon fiber-reinforced polymer reinforcement. Journal of Composites for Construction, 20(6), 04016037. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000692
  • Fujikura, S., Nguyen, M. H., Baba, S., Fujiwara, H., Tategami, H., & Murai, H. (2021). Development of narrow loop joint for precast concrete slabs with fiber-reinforced mortar: Experimental investigation of material properties and flexural behavior of joint. Applied Sciences, 11(17), 8235. https://doi.org/10.3390/app11178235
  • Girhammar, U., & Pajari, M. (2008). Tests and analysis on shear strength of composite slabs of hollow core units and concrete topping. Construction and Building Materials, 22(8), 1708–1722. https://doi.org/10.1016/j.conbuildmat.2007.05.013
  • Hawkins, N. M., & Ghosh, S. K. (2006). Shear strength of hollow-core slabs. PCI Journal, 51(1), 110–114.
  • Kankeri, P., & Prakash, S. S. (2017). Efficient hybrid strengthening for precast hollow core slabs at low and high shear span to depth ratios. Composite Structures, 170, 202–214. https://doi.org/10.1016/j.compstruct.2017.03.034
  • Li, X., Wu, G., Popal, M. S., & Jiang, J. (2018). Experimental and numerical study of hollow core slabs strengthened with mounted steel bars and prestressed steel wire ropes. Construction and Building Materials, 188, 456–469. https://doi.org/10.1016/j.conbuildmat.2018.08.073
  • Mahmoud, K., Foubert, S., & El-Salakawy, E. (2017). Strengthening of prestressed concrete hollow-core slab openings using near-surface-mounted carbon fiber reinforced polymer reinforcement. PCI Journal. https://www.pci.org/PCI_Docs/Publications/PCI%20Journal/2017/July-August/Strengthening%20of%20prestressed%20concrete%20hollow-core%20slab%20openings.pdf
  • Nasery, M. M., Hüsem, M., Okur, F. Y., & Altunişik, A. C. (2020a). Numerical and experimental investigation on dynamic characteristic changes of encased steel profile before and after cyclic loading tests. International Journal of Civil Engineering, 18(12), 1411–1431. https://doi.org/10.1007/s40999-020-00545-0
  • Nasery, M. M., Hüsem, M., Okur, F. Y., & Altunişik, A. C. (2020b). Damage effect on experimental modal parameters of haunch strengthened concrete-encased composite column–beam connections. International Journal of Damage Mechanics, 29(2), 297–334. https://doi.org/10.1177/1056789519843330
  • Nasery, M. M., Hüsem, M., Okur, F. Y., Altunışık, A. C., & Nasery, M. E. (2020). Model updating‐based automated damage detection of concrete‐encased composite column‐beam connections. Structural Control and Health Monitoring, 27(10), e2600. https://doi.org/10.1002/stc.2600
  • Pajari, M. (2005). Resistance of prestressed hollow core slabs against web shear failure. Technical Research Centre of Finland.
  • Pajari, M. (2009). Web shear failure in prestressed hollow core slabs. Journal of Structural Mechanics, 42(4), 207–217. https://scholar.google.com/scholar?hl=sk&as_sdt=0%2C5&q=Web+shear+failure+in+prestressed+hollow+core+slabs&btnG
  • Pinheiro, G., Moreno Júnior, A., Schultz, A., Silva, I., Arroyo, F. N., Aquino, V., Ferreira, M., Carvalho, R., Santos, H., Christoforo, A. L., & Almeida Filho, F. (2023). Shear behavior of prestressed hollow core one-way slabs with openings: Experimental, numerical, and standard formulation verification. Buildings, 13(7), 1857. https://doi.org/10.3390/buildings13071857
  • Shehab, H., Eisa, A., Wahba, A. M., Sabol, P., & Katunský, D. (2023). Strengthening of reinforced concrete columns using ultra-high performance fiber-reinforced concrete jacket. Buildings, 13(8), 2036. https://doi.org/10.3390/buildings13082036
  • Walraven, J. C., & Mercx, W. P. M. (1983). The bearing capacity of prestressed hollow core slabs. Heron, 28, 1–46. http://resolver.tudelft.nl/uuid:6aa92993-c77e-4bcd-bbda-f740ad6952b9
  • Wu, Y. (2015). Shear strengthening of single web prestressed hollow core slabs using externally bonded FRP sheets. https://scholar.uwindsor.ca/etd/5310/
  • Zając, J., Drobiec, Ł., Jasiński, R., Wieczorek, M., Mazur, W., Grzyb, K., & Kisiołek, A. (2021). The behaviour of half-slabs and hollow-core slab in four-edge supported conditions. Applied Sciences, 11(21), 10354. https://doi.org/10.3390/app112110354
  • Zavalis, M., Daugevičius, M., Jokūbaitis, A., Zavalis, R., & Valivonis, J. (2022). Deflection estimation model for prestressed concrete slabs with plastic inserts forming voids. Materials, 15(9), 3013. https://doi.org/10.3390/ma15093013