244
Views
0
CrossRef citations to date
0
Altmetric
Material Engineering

Performance of sustainable mortars containing blast furnace slag and fine concrete waste: an environmental perspective

, , &
Article: 2313053 | Received 07 Nov 2023, Accepted 27 Jan 2024, Published online: 14 Feb 2024

References

  • ACI 233R. (2003). Slag cement in concrete and mortar. ACI committee report. American Concrete Institute (pp. 1–19).
  • Alakara, E. H., Sevim, Ö., Demir, İ., & Günel, G. (2022). Effect of waste concrete powder on slag-based sustainable geopolymer composite mortars. Challenge Journal of Concrete Research Letters, 13(3), 101–106. https://doi.org/10.20528/cjcrl.2022.03.003
  • Amar, B. (2021). Bond behaviour of self-compacting mortar containing construction and demolition waste under elevated temperatures. Asian Journal of Civil Engineering, 22, 405–415. https://doi.org/10.1007/s42107-020-00321-4
  • ASTM C109. (2013). Standard test method for compressive strength of hydraulic cement mortar. ASTM International.
  • ASTM C1403. (2000). Standard test method for rate of water absorption of masonry mortars. ASTM International.
  • ASTM C1437. (2007). Standard test method for flow of hydraulic cement mortar. ASTM International.
  • ASTM C144. (2003). Standard specification for aggregate for masonry mortar. ASTM International.
  • ASTM C191. (2019). Standard test methods for time of setting of hydraulic cement by Vicat needle. ASTM International.
  • ASTM C270. (2014). Standard specifications for mortar for unit masonry. ASTM International.
  • Awang, H., & Aljoumaily, Z. S. (2017). Influence of granulated blast furnace slag on mechanical properties of foam concrete. Cogent Engineering, 4(1), 1409853. https://doi.org/10.1080/23311916.2017.1409853
  • Blengini, G. A. (2006). Life cycle assessment tools for sustainable development: Case studies for mining and construction industries in Italy and Portugal [PhD thesis]. Instituto Superior Tecnico, Universidade Tecnica de Lisboa. https://fenix.tecnico.ulisboa.pt
  • Boden, T. A., & Andres, R. J. (2017). Global CO2 emissions from fossil-fuel burning, cement manufacturing and gas flaring. Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL) (pp. 1751–2014). https://doi.org/10.3334/CDIAC/00001_V2017
  • BS 1881-114. (1983). Method for determination of density of hardened concrete. British Standards Institution.
  • BS EN 1008. (2002). Mixing water for concrete. Specification for sampling, testing and assessing the suitability of water, including water recovered from processes in the concrete industry, as mixing water for concrete. British Standard Institution.
  • BS EN 1015-10. (1999). Methods of test for mortar for masonry: Determination of dry bulk density of hardened mortar. British Standards Institution.
  • BS EN 1015-11. (1999). Methods of test for mortar for masonry: Determination of flexural and compressive strengths of hardened mortar. British Standards Institution.
  • Chen, C., Habert, G., Bouzidi, Y., Jullien, A., & Ventura, A. (2010). LCA allocation procedure used as an incitative method for waste recycling: An application to mineral additions in concrete. Resources, Conservation and Recycling, 54(12), 1231–1240. https://doi.org/10.1016/j.resconrec.2010.04.001
  • EN 15804. (2012). Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products. European Committee for Standardization.
  • Florea, M. V. A., Ning, Z., & Brouwers, H. J. H. (2014). Activation of liberated concrete fines and their application in mortars. Construction and Building Materials, 50, 1–12. https://doi.org/10.1016/j.conbuildmat.2013.09.012
  • Gastaldi, D., Canonico, F., Capelli, L., Buzzi, L., Boccaleri, E., & Irico, S. (2015). An investigation on the recycling of hydrated cement from concrete demolition waste. Cement and Concrete Composites, 61, 29–35. https://doi.org/10.1016/j.cemconcomp.2015.04.010
  • Kim, Y. J., & Choi, Y. W. (2012). Utilization of waste concrete powder as a substitution material for cement. Construction and Building Materials, 30, 500–504. https://doi.org/10.1016/j.conbuildmat.2011.11.042
  • Liu, Y., Su, Y., Xu, G., Chen, Y., & You, G. (2022). Research progress on controlled low-strength materials: Metallurgical waste slag as cementitious materials. Materials, 15(3), 727. https://doi.org/10.3390/ma15030727
  • Martinez, P. S., Cortina, M. G., Martínez, F. F., & Sanchez, A. R. (2016). Comparative study of three types of fine recycled aggregates from construction and demolition waste (CDW), and their use in masonry mortar fabrication. Journal of Cleaner Production, 118, 162–169. https://doi.org/10.1016/j.jclepro.2016.01.059
  • Mehta, P. K., & Monteiro, P. J. M. (2014). Concrete: Microstructure, properties, and materials (4th ed.). McGraw-Hill Education.
  • Moon, D. J., Moon, H. Y., & Kim, Y. B. (2005). Fundamental properties of mortar containing waste concrete powder. Geosystem Engineering, 8(4), 95–100. https://doi.org/10.1080/12269328.2005.10541243
  • Ngo, S. H., Nguyen, N. T., & Nguyen, X. H. (2022). Assessing the effect of GGBFS content on mechanical and durability properties of high-strength mortars. Civil Engineering Journal, 8(5), 938–950. https://doi.org/10.28991/CEJ-2022-08-05-07
  • Ohemeng, E. A., & Ekolu, S. O. (2019). Strength prediction model for cement mortar made with waste LDPE as fine aggregate. Journal of Sustainable Cement-Based Materials, 8(4), 228–243. https://doi.org/10.1080/21650373.2019.1625826
  • Ohemeng, E. A., & Naghizadeh, A. (2023). Alternative cleaner production of masonry mortar from fly ash and waste concrete powder. Construction and Building Materials, 374, 130859. https://doi.org/10.1016/j.conbuildmat.2023.130859
  • Ohemeng, E. A., Ramabodu, M. S., & Nena, T. D. (2023). Utilization of blast furnace slag as an enhancer in masonry mortars made with thermally treated waste concrete powder. Buildings, 13(10), 2616. https://doi.org/10.3390/buildings13102616
  • Ohemeng, E. A. (2023). Potentials of waste concrete elements for production of construction materials [PhD thesis]. University of Johannesburg. http://hdl.handle.net/102000/0002
  • Oksri-Nelfia, L., Mahieux, P. Y., Amiri, O., Turcry, P., & Lux, J. (2016). Reuse of recycled crushed concrete fines as mineral addition in cementitious materials. Materials and Structures, 49(8), 3239–3251. https://doi.org/10.1617/s11527-015-0716-1
  • Oleiwi, S. M. (2021). Compressive strength of mortar with partial replacement of cement by fly ash and GGBFS. Diyala Journal of Engineering Sciences, 14(4), 147–156. https://doi.org/10.24237/djes.2021.14412
  • Prošek, Z., Nežerka, V., Hlůžek, R., Trejbal, J., Tesárek, P., & Karra’a, G. (2019). Role of lime, fly ash, and slag in cement pastes containing recycled concrete fines. Construction and Building Materials, 201, 702–714. https://doi.org/10.1016/j.conbuildmat.2018.12.227
  • Sambowo, K. A., Ramadhan, M. A., & Igirisa, F. (2021). Effect of GGBFS on compressive strength, porosity, and absorption in mortars. IOP Conference Series: Earth and Environmental Science, 832, 012012. https://doi.org/10.1088/1755-1315/832/1/012012
  • Thakur, L. C., Kumar, S., & Singh, J. P. (2016). Assessment of the properties of cement and mortar using GGBS. International Journal of Innovative Research in Science, Engineering and Technology, 5(8), 15224–15231. https://doi.org/10.15680/IJIRSET.2016.0508098
  • Thays, C. F. O., Bianca, G. S. D., & Edna, P. (2020). Use of concrete fine fraction waste as a replacement of Portland cement. Journal of Cleaner Production, 273, 123126. https://doi.org/10.1016/j.jclepro.2020.123126
  • Wu, H., Yang, D., Xu, J., Liang, C., & Ma, Z. (2021). Water transport and resistance improvement for the cementitious composites with eco-friendly powder from various concrete wastes. Construction and Building Materials, 290, 123247. https://doi.org/10.1016/j.conbuildmat.2021.123247
  • Xianwei, MW., & Zhenyu, W. (2013). Effect of ground waste concrete powder on cement properties. Advances in Materials Science and Engineering, 918294. https://doi.org/10.1155/2013/918294