220
Views
0
CrossRef citations to date
0
Altmetric
Mechanical engineering

Simulation studies on the performance comparison of thermoacoustic prime mover with various resonator geometries and different stack materials

ORCID Icon, , , & ORCID Icon
Article: 2322073 | Received 19 Dec 2023, Accepted 18 Feb 2024, Published online: 06 Mar 2024

References

  • Balonji, S., Alcock, A. C., Tartibu, L. K., & Jen, T. C. (2019). Performance alteration of standing wave thermoacoustically driven engine through resonator length adjustment. Procedia Manufacturing, 35, 1350–1355. https://doi.org/10.1016/j.promfg.2019.09.002
  • Bhatti, U. N., Bashmal, S., Khan, S., & Ben-Mansour, R. (2023). Numerical modeling of standing wave thermoacoustic devices–A review. International Journal of Refrigeration, 146, 47–62. https://doi.org/10.1016/j.ijrefrig.2022.09.024
  • Bouramdane, Z., Bah, A., Alaoui, M., & Martaj, N. (2023). Design optimization and CFD analysis, of the dynamic behavior of a standing wave thermoacoustic engine with various geometry parameters and boundary conditions. International Journal of Air-Conditioning and Refrigeration, 31(1), 1–23. https://doi.org/10.1007/s44189-022-00018-0
  • Chen, B., Jiao, F., Ho, K., Yang, M., Tian, S., & Li, H. (2017). Numerical analysis of acoustic field in a 2-stage traveling wave thermoacoustic engine based on DeltaEC. Energy Procedia, 105, 4615–4620. https://doi.org/10.1016/j.egypro.2017.03.999
  • Chen, G., Tang, L., Mace, B., & Yu, Z. (2021). Multi-physics coupling in thermoacoustic devices: A review. Renewable and Sustainable Energy Reviews, 146, 111170. https://doi.org/10.1016/j.rser.2021.111170
  • Di Meglio, A., & Massarotti, N. (2022). CFD modeling of thermoacoustic energy conversion: A review. Energies, 15(10), 3806. vol15https://doi.org/10.3390/en15103806
  • Eldeeb, M. A., Essam, E. K., & Fouad, M. A. (2011). Resonator shape effect on the performance of a standing-wave thermoacoustic heat engine [Paper presentation]. 9th Annual International Energy Conversion Engineering Conference, 31 July–03 August, San Diego, California.
  • Guo, L., Zhao, D., Yu, G., & Dong, X. (2023). Numerical investigations on energy conversion performances in twin standing-wave thermoacoustic engines with various geometric and operational conditions. Thermal Science and Engineering Progress, 45(1), 102134. https://doi.org/10.1016/j.tsep.2023.102134
  • Hariharan, N. M., Sivashanmugam, P., & Kasthurirengan, S. (2013a). Influence of operational and geometrical parameters on the performance of twin thermoacoustic prime mover. International Journal of Heat and Mass Transfer, 64, 1183–1188. https://doi.org/10.1016/j.ijheatmasstransfer.2013.05.045
  • Hariharan, N. M., Sivashanmugam, P., & Kasthurirengan, S. (2013b). Effect of resonator length and working fluid on the performance of twin thermoacoustic heat engine – Experimental and Simulation studies. Computers and Fluids, 75, 51–55. https://doi.org/10.1016/j.compfluid.2013.01.019
  • Hariharan, N. M., Sivashanmugam, P., & Kasthurirengan, S. (2013c). Optimization of thermoacoustic refrigerator using response surface methodology. Journal of Hydrodynamics, 25(1), 72–82. https://doi.org/10.1016/S1001-6058(13)60340-6
  • http://www.lanl.gov/thermoacoustics/UsersGuide.pdf. February 13, 2012.
  • Imrul Kayes, M., & Ashiqur Rahman, M. (2023). Experimental investigation of a modified parallel stack for wet thermoacoustic engine to improve performance and suppress harmonics. Applied Acoustics, 212, 109569. https://doi.org/10.1016/j.apacoust.2023.109569
  • Kalra, S., Desai, K. P., Naik, H. B., & Atrey, M. D. (2015). Theoretical study on standing wave thermoacoustic engine. Physics Procedia, 67, 456–461. https://doi.org/10.1016/j.phpro.2015.06.058
  • Konaina, T., Alkhwildy, E., Yassen, N., & Morad, I. (2014). Thermoacoustic prime mover sizing software. Energy Procedia, 50, 1017–1026. https://doi.org/10.1016/j.egypro.2014.06.121
  • Nsofor, E. C., & Ali, A. (2009). Experimental study on the performance of the thermoacoustic refrigerating system. Applied Thermal Engineering, 29(13), 2672–2679. https://doi.org/10.1016/j.applthermaleng.2008.12.036
  • Tang, K., Chen, G. B., Jin, T., Bao, R., & Li, X. M. (2006). Performance comparison of thermoacoustic engines with constant-diameter resonant tube and tapered resonant tube. Cryogenics, 46(10), 699–704. https://doi.org/10.1016/j.cryogenics.2006.04.006
  • Tijani, M. E. H. (2001). Loudspeaker-driven thermoacoustic refrigeration (doctoral dissertation. Eindhoven University of Technology. Eindhoven. Netherland).
  • Timmer, M. A., de Blok, K., & van der Meer, T. H. (2018). Review on the conversion of thermoacoustic power into electricity. The Journal of the Acoustical Society of America, 143(2), 841–857. https://doi.org/10.1121/1.5023395
  • Wang, K., & Hu, Z.-C. (2023). Experimental investigation of a novel standing-wave thermoacoustic engine based on PCHE and supercritical CO2. Energy, 282(1), 128334. https://doi.org/10.1016/j.energy.2023.128334
  • Yang, P., Fang, M., & Liu, Y. W. (2014). Optimization of a phase adjuster in a thermo-acoustic stirling engine using response surface methodology. Energy Procedia, 61, 1772–1775. https://doi.org/10.1016/j.egypro.2014.12.209
  • Yao, C., Liu, J., & Yan, J. (2023). Numerical investigation of nonlinear effects in a standing wave thermoacoustic engine using the discontinuous Galerkin method. International Journal of Heat and Mass Transfer, 216(1), 124526. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124526
  • Yu, G. Y., Luo, E. C., Dai, W., & Wu, Z. H. (2007). An energy focused thermoacoustic stirling heat engine reaching a pressure ratio above 1.40. Cryogenics, 47(2), 132–134. https://doi.org/10.1016/j.cryogenics.2006.12.001
  • Zink, F., Vipperman, J., & Schaefer, L. (2010). CFD simulation of a thermoacoustic engine with coiled resonator. International Communications in Heat and Mass Transfer, 37(3), 226–229. https://doi.org/10.1016/j.icheatmasstransfer.2009.09.001