304
Views
0
CrossRef citations to date
0
Altmetric
Computer Science

Investigation of MobileNet-Ssd on human follower robot for stand-alone object detection and tracking using Raspberry Pi

ORCID Icon & ORCID Icon
Article: 2333208 | Received 13 Mar 2023, Accepted 15 Mar 2024, Published online: 01 Apr 2024

References

  • Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., & Ghemawat, S. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems. https://www.tensorflow.org/
  • Abbaszadeh Shahri, A., Asheghi, R., & Khorsand Zak, M. (2021). A hybridized intelligence model to improve the predictability level of strength index parameters of rocks. Neural Computing and Applications, 33(8), 3841–3854. https://doi.org/10.1007/s00521-020-05223-9
  • Abbaszadeh Shahri, A., Shan, C., & Larsson, S. (2022). A novel approach to uncertainty quantification in groundwater table modeling by automated predictive deep learning. Natural Resources Research, 31(3), 1351–1373. https://doi.org/10.1007/s11053-022-10051-w
  • Algabri, R., & Choi, M.-T. (2021). Target recovery for robust deep learning-based person following in mobile robots: Online trajectory prediction. Applied Sciences, 11(9) , 4165. https://doi.org/10.3390/app11094165
  • Alzubi, J., Jain, R., Nagrath, P., Satapathy, S., Taneja, S., & Gupta, P. (2021). Deep image captioning using an ensemble of CNN and LSTM based deep neural networks. Journal of Intelligent & Fuzzy Systems, 40(4), 5761–5769. https://doi.org/10.3233/JIFS-189415
  • Alzubi, O., Alzubi, J., Al-Zoubi, A., Hassonah, M., & Kose, U. (2022). An efficient malware detection approach with feature weighting based on Harris Hawks optimization. Cluster Computing, 25(4), 2369–2387. https://doi.org/10.1007/s10586-021-03459-1
  • Antoniou, A. (2021). A pragmatic approach to the ontology of models. Synthese, 199(3-4), 6645–6664. https://doi.org/10.1007/s11229-021-03085-9
  • Asheghi, R., Hosseini, S., Saneie, M., & Shahri, A. (2020). Updating the neural network sediment load models using different sensitivity analysis methods: A regional application. Journal of Hydroinformatics, 22(3), 562–577. https://doi.org/10.2166/hydro.2020.098
  • Chen, S., Ren, Y., Friedrich, D., Yu, Z., & Yu, J. (2020). Sensitivity analysis to reduce duplicated features in ANN training for district heat demand prediction. Energy and AI, 2, 100028. https://doi.org/10.1016/j.egyai.2020.100028
  • Chita-Tegmark, M., & Scheutz, M. (2021). Assistive robots for the social management of health: A framework for robot design and human–robot interaction research. International Journal of Social Robotics, 13(2), 197–217. https://doi.org/10.1007/s12369-020-00634-z
  • Dipu, M., Hossain, S., Arafat, Y., & Rafiq, F. (2021). Real-time driver drowsiness detection using deep learning. International Journal of Advanced Computer Science and Applications, 12(7), 844–850. https://doi.org/10.14569/IJACSA.2021.0120794
  • Ghaderi, A., Abbaszadeh Shahri, A., & Larsson, S. (2022). A visualized hybrid intelligent model to delineate Swedish fine-grained soil layers using clay sensitivity. CATENA, 214, 106289.https://doi.org/10.1016/j.catena.2022.106289
  • Gupta, M., Kumar, S., Behera, L., & Subramanian, V. K. (2017). A novel vision-based tracking algorithm for a human-following mobile robot. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(7), 1415–1427. https://doi.org/10.1109/TSMC.2016.2616343
  • Han, D., & Peng, Y. (2020). Human-following of mobile robots based on object tracking and depth vision. In 2020 3rd International Conference on Mechatronics, Robotics and Automation, ICMRA 2020 (pp. 105–109). https://doi.org/10.1109/ICMRA51221.2020.9398366
  • Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. https://arxiv.org/pdf/1704.04861.pdf
  • Islam, M., Hong, J., & Sattar, J. (2019). Person-following by autonomous robots: A categorical overview. The International Journal of Robotics Research, 38(14), 1581–1618. https://doi.org/10.1177/0278364919881683
  • Jiang, L., Nie, W., Zhu, J., Gao, X., & Lei, B. (2022). Lightweight object detection network model suitable for indoor mobile robots. Journal of Mechanical Science and Technology, 36(2), 907–920. https://doi.org/10.1007/s12206-022-0138-2
  • Kamath, V., & Renuka, A. (2023). Deep learning based object detection for resource constrained devices: Systematic review, future trends and challenges ahead. Neurocomputing, 531, 34–60. https://doi.org/10.1016/j.neucom.2023.02.006
  • Karaman, O., Alhudhaif, A., & Polat, K. (2021). Development of smart camera systems based on artificial intelligence network for social distance detection to fight against covid-19. Applied Soft Computing, 110, 107610. https://doi.org/10.1016/j.asoc.2021.107610
  • Kastner, L., Fatloun, B., Shen, Z., Gawrisch, D., & Lambrecht, J. (2022). Human-following and -guiding in crowded environments using semantic deep-reinforcement-learning for mobile service robots. In Proceedings - IEEE International Conference on Robotics and Automation (pp. 833–839). https://doi.org/10.1109/ICRA46639.2022.9812111
  • Khare, S., Palakkal, S., Hari Krishnan, T., Seo, C., Kim, Y., Yun, S., & Parameswaran, S. (2020). Real-time driver drowsiness detection using deep learning and heterogeneous computing on embedded system. In N. Nain, S. K. Vipparthi, and B. Raman (Eds.), Communications in computer and information science, 1148 CCIS (pp. 86–97). Springer Singapore. https://doi.org/10.1007/978-981-15-4018-9_8
  • Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014). Microsoft coco: Common objects in context. In D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars (Eds.), Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), 8693 LNCS(PART 5) (pp. 740–755). Springer International Publishing. https://doi.org/10.1007/978-3-319-10602-1_48
  • Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. (2016). Ssd: Single shot multibox detector. In Leibe, Bastian and Matas, Jiri and Sebe, Nicu and Welling, Max (Eds.), Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), 9905 LNCS (pp. 21–37). Springer International Publishing. https://doi.org/10.1007/978-3-319-46448-0_2
  • Malik, H., Fatema, N., & Alzubi, J. (2021). Ai and machine learning paradigms for health monitoring system. Springer. https://doi.org/10.1007/978-981-33-4412-9
  • Merrill, G. H. (2011). Ontology, ontologies, and science. Topoi, 30(1), 71–83. https://doi.org/10.1007/s11245-011-9091-x
  • Movassagh, A., Alzubi, J., Gheisari, M., Rahimi, M., Mohan, S., Abbasi, A., & Nabipour, N. (2023). Artificial neural networks training algorithm integrating invasive weed optimization with differential evolutionary model. Journal of Ambient Intelligence and Humanized Computing, 14(5), 6017–6025. https://doi.org/10.1007/s12652-020-02623-6
  • Murthy, C., Hashmi, M., & Keskar, A. (2021). Optimized MobileNet + SSD: A real-time pedestrian detection on a low-end edge device. International Journal of Multimedia Information Retrieval, 10(3), 171–184. https://doi.org/10.1007/s13735-021-00212-7
  • Ou, S., Park, H., & Lee, J. (2019). Implementation of an obstacle recognition system for the blind. Applied Sciences, 10(1), 282. https://doi.org/10.3390/app10010282
  • Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., & Chintala, S. (2019). Pytorch: An imperative style, high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, & R. Garnett (Eds.), Advances in neural information processing systems (Vol. 32, pp. 8024–8035). Curran Associates. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
  • Rosebrock, A. (2015, December). Increasing raspberry pi fps with python and opencv. https://pyimagesearch.com/2015/12/28/increasing-raspberry-pi-fps-with-python-and-opencv/
  • Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., & Fei-Fei, L. (2015). Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 115(3), 211–252. https://doi.org/10.1007/s11263-015-0816-y
  • Safadinho, D., Ramos, J., Ribeiro, R., Filipe, V., Barroso, J., & Pereira, A. (2020). UAV landing using computer vision techniques for human detection. Sensors, 20(3), 613. https://doi.org/10.3390/s20030613
  • Saini, J. (2021). Ai robot - object detection with tensorflow lite on raspberry pi—live-stream results on browser. https://github.com/jiteshsaini/robotics-level-4/tree/main/earthrover/object_detection
  • Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 4510–4520). https://doi.org/10.1109/CVPR.2018.00474
  • Sanjay Kumar, K., Subramani, G., Thangavel, S., & Parameswaran, L. (2021). A mobile-based framework for detecting objects using ssd-mobilenet in indoor environment. In Peter, J. Dinesh, Fernandes, Steven L. & Alavi, Amir H. (Eds.), Advances in intelligent systems and computing (Vol. 1167, pp. 65–76). Springer Singapore. https://doi.org/10.1007/978-981-15-5285-4_6
  • Shafique, M., Theocharides, T., Reddy, V., & Murmann, B. (2021). Tinyml: Current progress, research challenges, and future roadmap. In Proceedings - Design Automation Conference (Vol. 2021–December, pp. 1303–1306). IEEE. https://doi.org/10.1109/DAC18074.2021.9586232
  • Shakeel, M., Bajwa, N., Anwaar, A., Sohail, A., Khan, A., & Ur Rashid, H. (2019). Detecting driver drowsiness in real time through deep learning based object detection. In Rojas, Ignacio, Joya, Gonzalo, & Catala, Andreu (Eds.), Advances in Computational Intelligence, Lecture Notes in Computer Science LNTCS 11506. (pp. 283–296). Springer International Publishing. https://doi.org/10.1007/978-3-030-20521-8_24
  • Singh, A., Kalaichelvi, V., & Karthikeyan, R. (2022). A survey on vision guided robotic systems with intelligent control strategies for autonomous tasks. Cogent Engineering, 9(1), 2050020. https://doi.org/10.1080/23311916.2022.2050020
  • Yuan, J., Cai, J., Zhang, X., Sun, Q., Sun, F., & Zhu, W. (2021). Fusing skeleton recognition with face-TLD for human following of mobile service robots. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(5), 2963–2979. https://doi.org/10.1109/TSMC.2019.2921974
  • Zhang, J., Xu, J., Zhu, L., Zhang, K., Liu, T., Wang, D., & Wang, X. (2020). An improved MobileNet-SSD algorithm for automatic defect detection on vehicle body paint. Multimedia Tools and Applications, 79(31-32), 23367–23385. https://doi.org/10.1007/s11042-020-09152-6
  • Zhou, W., Dickenson, P., Cai, H., & Li, B. (2022). Human following for mobile robots. In Liu, Honghai and Yin, Zhouping and Liu, Lianqing and Jiang, Li and Gu, Guoying and Wu, Xinyu and Ren, Weihong (Eds.), Intelligent Robotics and Applications Lecture notes in computer science, 13455 LNAI (pp. 660–668). Springer International Publishing. https://doi.org/10.1007/978-3-031-13844-7_61